Journal articles: |
- Alturayeif, N. and Ahmad, I. (2025).
Ease: An enhanced active learning framework for aspect-based
sentiment analysis based on sample diversity and data augmentation.
Expert Systems with Applications, 261:125525.
- Al-Shaibani, M. S., & Ahmad, I. (2024).
Dotless Arabic text
for Natural Language Processing. Computational Linguistics,
1-42.
- Alomari, D., & Ahmad, I. (2024).
Exploring
Character Trigrams for Robust Arabic Text Classification: A
Comparative Analysis in the Face of Vocabulary Expansion and
Misspelled Words. IEEE Access.
- Elmajali, S., & Ahmad, I. (2024).
Towards early
detection of depression: detecting depression symptoms in Arabic
tweets using pretrained transformers. IEEE Access.
- Ahmad, I. (2023).
A Hybrid
Rule-Based and Machine Learning System for Arabic Check Courtesy
Amount Recognition. Sensors, 23(9), 4260.
- Alnaseef, F., Niazi, M., Mahmood, S.,
Alshayeb, M., & Ahmad, I. (2023).
Towards a Successful Secure Software Acquisition. Information
and Software Technology, 107315.
- Alyafeai, Z., Al-shaibani, M. S.,
Ghaleb, M., & Ahmad, I. (2023).
Evaluating various tokenizers for Arabic
text classification. Neural
Processing Letters, 55(3), 2911-2933.
- Alhathloul, Z.; Ahmad, I. (2022).
Automatic
dottization of Arabic text (Rasms) using deep recurrent neural
networks, Pattern Recognition Letters, 162,
47–55.
- AlDhafer, O., Ahmad, I., & Mahmood, S.
(2022). An
end-to-end deep learning system for requirements classification
using recurrent neural networks. Information and Software
Technology 147 (2022), 106877.
- Shawahna, A., Sait, S. M., El-Maleh, A.,
Ahmad, I. (2022)
FxP-QNet: A Post-Training Quantizer for
the Design of Mixed Low-Precision DNNs with Dynamic Fixed-Point
Representation, IEEE Access, 10, 30202-30231.
- Eltay M, Zidouri A, Ahmad I, Elarian Y.
(2022). Generative
adversarial network based adaptive data augmentation for handwritten
Arabic text recognition. PeerJ Computer Science 8:e861
- Kashifi, MT.; Ahmad, I. (2022)
An
Efficient Histogram-based Gradient Boosting Approach for Accident
Severity Prediction with Multisource Data. Transportation Research
Record, 2676(6), 236–258.
- Alkhulaifi, A.; Jamal, A.; Ahmad, I (2021).
Predicting Traffic
Sign Retro-Reflectivity Degradation Using Deep Neural Networks.
Appl. Sci. 2021, 11, 11595.
- Alkhulaifi, A.; Alsahli, F.; Ahmad, I.
(2021). Knowledge Distillation in Deep Learning and its
Applications. PeerJ Computer Science
7:e474.
[pdf]
- Nemer, I.; Sheltami, T.; Ahmad, I.; Yasar,
A.U.-H.; Abdeen, M.A.R. (2021).
RF-Based UAV Detection
and Identification Using Hierarchical Learning Approach. Sensors
2021, 21, 1947.
- Syed, M. N., Hassan, M. R., Ahmad, I.,
Hassan, M. M., & de Albuquerque, V. H. C. (2021).
A Novel Linear
Classifier for Class Imbalance Data Arising in Failure-prone Air
Pressure Systems. IEEE Access.
- Al-shaibani, M. S., Alyafeai, Z., & Ahmad,
I. (2020). MetRec: A Dataset for Meter Classification of Arabic Poetry.
Data in Brief, 106497.
- Ahmad, I., Awaida, S., & Mahmoud, S. A.
(2020). Arabic
literal amount sub-word recognition using multiple features and
classifiers. International Journal of Applied Pattern
Recognition, 6(2), 103–123.
- Al-shaibani, M. S., Alyafeai, Z., & Ahmad,
I. (2020).
Meter Classification of Arabic Poems Using Deep Bidirectional
Recurrent Neural Networks. Pattern Recognition Letters, 136, 1–7.
- Eltay, M., Zidouri, A., & Ahmad, I. (2020).
Exploring Deep Learning Approaches to Recognize Handwritten Arabic
Texts. IEEE Access, 8, 89882-89898. [pdf]
- Ahmad, I., & Fink, G. A. (2019).
Handwritten Arabic text recognition using multi-stage sub-core-shape
HMMs. International Journal on Document Analysis and
Recognition (IJDAR), 22(3), 329–349.
- Elarian, Y., Ahmad, I., Zidouri, A., &
Al-Khatib, W. G. (2019),
LUCIDAH:
Ligative and Unligative Characters in a Dataset for Arabic
Handwriting, International Journal of Advanced Computer Science
and Applications (IJACSA), Vol. 10, No.8, 406–415. [pdf]
- Ahmad, I., Mahmoud, S. A., & Fink, G. A.
(2016).
Open-vocabulary recognition of machine-printed Arabic text
using hidden Markov models. Pattern Recognition, 51, 97–111. [pdf]
- Elarian, Y. S., Ahmad, I., Awaida, S. M.,
Al-Khatib, W. G., & Zidouri, A. (2015).
An Arabic
handwriting synthesis system. Pattern Recognition, 48(3),
849–861.
- Elish, M. O., Aljamaan, H., & Ahmad, I.
(2015).
Three
empirical studies on predicting software maintainability using
ensemble methods. Soft Computing, 19(9), 2511–2524.
- Mahmoud, S. A., Ahmad, I., Al-Khatib, W. G.,
Alshayeb, M., Tanvir Parvez, M., Märgner, V., & Fink, G. A. (2014).
KHATT: An open
Arabic offline handwritten text database. Pattern Recognition,
47(3), 1096–1112.
- Elarian, Y. S., Abdel-Aal, R., Ahmad, I.,
Parvez, M. T., & Zidouri, A. (2014).
Handwriting
synthesis: classifications and techniques. International Journal
on Document Analysis and Recognition (IJDAR), 17(4), 455–469.
- Ahmad, I., & Mahmoud, S. A. (2013).
Arabic Bank Check
Processing: State of the Art. Journal of Computer Science and
Technology, 28(2), 285–299.
- Ahmed, M. A., Ahmad, I., & AlGhamdi, J. S.
(2013).
Probabilistic size proxy for software effort prediction: A framework.
Information and Software Technology, 55(2), 241–251.
- Eleiche, A. M., Ahmad, I., & Elish, M. O.
(2012).
Design Requirements in Software and Engineering Systems.
Industrial Engineering & Management Systems, 11(1), 70–81.
|
Conference articles: |
- Alhubaiti, O., & Ahmad, I. (2023, August).
Typefaces and Ligatures in Printed Arabic Text: A Deep
Learning-Based OCR Perspective. In International Conference on
Document Analysis and Recognition, ICDAR (pp. 5-18). Cham: Springer
Nature Switzerland.
- Eltay, M., Zidouri, A., & Ahmad, I.,
Elarian, Y. (2021). Improving Handwritten Arabic Text Recognition
Using an Adaptive Data-Augmentation Algorithm. In ICDAR 2021
Workshop on Arabic and Derived Script Analysis and Recognition
(ASAR), pp. 322-335. [pdf]
- Alyafeai, Z., & Ahmad, I. (2021).
Arabic Compact Language Modelling for Resource Limited Devices. In
the Sixth Arabic Natural Language Processing Workshop (WANLP 2021),
in conjunction with European Chapter of the Association for
Computational Linguistics (EACL), pp. 53-59. [pdf]
- Alsobaie, H., & Ahmad, I. (2020).
Compression
Techniques for Handwritten Digit Recognition. In 2020
International Conference on Innovation and Intelligence for
Informatics, Computing and Technologies (3ICT) (pp. 1-6). IEEE.
- Almohammedi, A. M., & Ahmad, I. (2020,
November).
Feature
Compression Based on Discrete Cosine Transform for Handwritten Digit
Recognition. In 2020 First International Conference of Smart
Systems and Emerging Technologies (SMARTTECH) (pp. 13-20). IEEE.
- Ahmad, I. (2019).
Performance of Classifiers on Noisy-Labeled Training Data: An
Empirical Study on Handwritten Digit Classification Task. In
International Work-Conference on Artificial Neural Networks (pp.
414-425). Springer.
- Helali, M., Alneghaimish, A., and Ahmad, I.
(2017). Handwritten Digit Recognition under Constrained Training
Conditions. In Proceedings of the 8th International Conference of
Pattern Recognition Systems, Madrid, Spain 2017. [pdf]
- Ahmad, I., and Fink, G. A. (2016).
Class-Based Contextual Modeling for Handwritten Arabic Text
Recognition. In Proceedings of the 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR 2016), Shenzhen, China,
2016. [pdf]
- Ahmad, I., & Fink, G. A. (2015).
Multi-stage HMM
based Arabic text recognition with rescoring. In Proceedings of
the 13th International Conference on Document Analysis and
Recognition (ICDAR 2015) (pp. 751–755). IEEE. [pdf]
- Ahmad, I., & Fink, G. A. (2015).
Training an
Arabic handwriting recognizer without a handwritten training data
set. In Proceedings of the 13th International Conference on
Document Analysis and Recognition (ICDAR 2015) (pp. 476–480). IEEE.
[pdf]
- Elarian, Y. S., Ahmad, I., Awaida, S. M.,
Al-Khatib, W. G., & Zidouri, A. (2015).
Arabic Ligatures: Analysis
and Application in Text Recognition. In Proceedings of the 13th
International Conference on Document Analysis and Recognition (ICDAR
2015) (pp. 896–900). IEEE.
- Ahmad, I., Fink, G. A., & Mahmoud, S. A.
(2014). Improvements
in Sub-character HMM Model Based Arabic Text Recognition. In
Proceedings of the 14th International Conference on Frontiers in
Handwriting Recognition (ICFHR 2014) (pp. 537–542). Crete: IEEE. [pdf]
- Ahmad, I., Rothacker, L., Fink, G. A., &
Mahmoud, S. A. (2013).
Novel Sub-character
HMM Models for Arabic Text Recognition. In Proceedings of the
12th International Conference on Document Analysis and Recognition
(ICDAR 2013) (pp. 658–662). IEEE. [pdf]
- Ahmad, I. (2013).
A Technique for Skew
Detection of Printed Arabic Documents. In Proc. of 10th
International Conference Computer Graphics, Imaging and
Visualization (CGIV) (pp. 62–67). IEEE Computer Society.
- Aljamaan, H., Elish, M. O., & Ahmad, I.
(2013). An
Ensemble of Computational Intelligence Models for Software
Maintenance Effort Prediction. In I. Rojas, G. Joya, & J.
Gabestany (Eds.), Advances in Computational Intelligence SE - 60
(Vol. 7902, pp. 592–603). Springer Berlin Heidelberg.
- Mahmoud, S. A., Ahmad, I., Alshayeb, M.,
Al-Khatib, W. G., Parvez, M. T., Fink, G. A., … EL Abed, H. (2012).
KHATT: Arabic Offline Handwritten Text Database. In Proceedings of
the 13th International Conference on Frontiers in Handwriting
Recognition (ICFHR 2012) (pp. 447–452). IEEE.
- Ahmad, I., & Mahmoud, S. A. (2012).
Arabic Bank
Check Analysis and Zone Extraction. In A. Campilho & M. Kamel
(Eds.), Image Analysis and Recognition (Vol. 7324, pp. 141–148).
Springer Berlin Heidelberg.
- Mahmoud, S. A., Ahmad, I., Alshayeb, M., &
Al-Khatib, W. G. (2011).
A database for offline Arabic handwritten
text recognition. In Lecture Notes in Computer Science, Vol. 6754
LNCS, pp. 397–406. Springer, Berlin, Heidelberg.
- El-Attar, M., & Ahmad, I. (2011).
Improving
Quality in Misuse Case Models: A Risk-Based Approach. In Computer
and Information Science (ICIS), 2011 IEEE/ACIS 10th International
Conference on (pp. 337–342).
- Helmy, T., Ahmad, I., & Alvi, A. K. (2008).
A Framework for
Fair and Reliable Resource Sharing in Distributed Systems. In P.
Kacsuk, R. Lovas, & Z. Németh (Eds.), Distributed and Parallel
Systems (pp. 115–128). Boston, MA: Springer US.
|
Book chapter: |
- Ahmad, I., Mahmoud, S. A., & Parvez,
M. T. (2012).
Printed Arabic Text Recognition. In V. Märgner & H. El
Abed (Eds.), Guide to OCR for Arabic Scripts (pp. 147–168). Springer
London.
|
Patents: |
- Irfan Ahmad, A Technique for Skew Detection
in Printed Arabic Documents, US Patent US9288362 B2, 2016.
- Irfan Ahmad and Sabri A Mahmoud, Adaptive
Sliding Windows for Text Recognition, US Patent US
9,501,708, 2016.
- Irfan Ahmad and Sabri A. Mahmoud, Arabic
Bank Check Analysis and Zone Extraction Method, US Patent
US8,699,780 B1, 2014.
|