SE513: Systems Identification

Lecture 1 Introduction to Systems Identification Dr. Samir Al-Amer

Lecture Outlines

- What is Identification
- + Modeling vs. Identification
- + Types of models
- + Flow chart for systems identification
- Problems in identification

Systems Identification

Identification is a process in which
 <u>experimental data</u> is used to obtain a
 <u>mathematical model</u> describing the system

 Identification is a process that uses u(t) and y(t) to determine the dynamics of the system

Why do we need models?

- Models can be used to improve our understanding of the process.
- Models are needed in designing better controllers
- A Model can be a part of some controllers like feed forward controllers
- A model can be very valuable in optimizing the operating conditions to get the best performance of control systems

The Four Problems of Identification

Representation Measurement

Estimation

Validation

Representation

What types of models are used to represent the system? Types of Models: Mental, intuitive, verbal Graphs and tables: step response, Bode plot Mathematical models static/dynamic, linear/nonlinear, lumped/distributed, continuous/discrete, time-domain/frequency domain

Representation issues

Some of the issues How to select the model structure Flexibility of the model Complexity of the model

Measurement

Which physical quantities should be measured?

- How should we measure them?
- Some of the issues:
 - Some variables of interest are difficult or impossible to measure
 - Presence of noise in the measured data

Estimation

How do we estimate the model parameters from the measured data? How do we estimate the nonparametric model from the measured data?

Validation

Can the model explain the measured data?

Are the confidence limits on the model acceptable?

The Four Problems of Identification

Representation Measurement

Estimation

Validation

How do we obtain mathematical models?

Modeling

(Theoretical)

- Construct a simplified version using idealized elements
- Write element laws
- Write interaction laws
- Combine element laws and interaction laws to obtain the model

Identification

(Experimental)

- Conduct an experiment
- Collect data
- Fit data to a model
- Verify the model

Natural Laws in Modeling

In processing systems, Conservation of energy Conservation of mass Conservation of individual components Conservation of momentum are useful in Obtaining mathematical models

Conservation Principle

over any time period,

the rate of accumulation of S within the system

- = flow rate of S in the system
 - flow rate of S out of the system
 - + rate of the amount generated within the system
 - rate of the amount consumed within the system

Heated Stirred Tank Conservation of energy

$$\left\{ \begin{array}{c} rate \ of \\ energy \\ accumulation \end{array} \right\} = \left\{ \begin{array}{c} rate \ of \\ energy \ of \\ inlet \ material \end{array} \right\} - \left\{ \begin{array}{c} rate \ of \\ energy \ of \\ outlet \ material \end{array} \right\} + \left\{ \begin{array}{c} rate \ of \ energy \\ provided \\ by \ heater \end{array} \right\}$$

$$\left\{ V \rho C \frac{dT}{dt} \right\} = \left\{ w_i C(T_i - T_{ref}) \right\} - \left\{ w C(T - T_{ref}) \right\} + \left\{ Q \right\}$$
$$V \rho C \frac{dT}{dt} = w C(T_i - T) + Q$$

V:volumeC: specific heatw:outlet flow rateQ: heat flow rate T_i : inlet temp.T: outlet temp T_{ref} : Reference temp

Heated Stirred Tank

Conservation of mass and Energy

Mass Conservation

$$\begin{cases} rate of mass \\ accumulation \end{cases} = \begin{cases} rate of mass \\ of inlet material \end{cases} - \begin{cases} rate of mass \\ of outlet material \end{cases}$$
$$\frac{d(V\rho)}{dt} = w_i - w$$

Energy Balance

$$C\frac{d\left(V\rho(T-T_{ref})\right)}{dt} = w_i C(T_i - T_{ref}) - wC(T - T_{ref}) + Q$$

Heated Stirred Tank Model

Mass Conservation $d(V_{\alpha})$

$$\frac{d(V\rho)}{dt} = w_i - w$$

Energy Balance

$$C \frac{d(V \rho(T - T_{ref}))}{dt} = w_i C(T_i - T_{ref}) - wC(T - T_{ref}) + Q$$

Combining

$$C(T - T_{ref})(w_i - w) + V \rho C \frac{dT}{dt} = w_i C(T_i - T_{ref}) - w C(T - T_{ref}) + Q$$

Heated Stirred Tank Model

Alternative Model

$$\frac{dV}{dt} = \frac{1}{\rho} (w_i - w)$$

$$\frac{dT}{dt} = \frac{w_i}{V \rho} (T_i - T) + \frac{Q}{V \rho C}$$

further simplifications are possible : Example V is constant,

Electrically Heated Stirred Tank Model

Assumptions : $w_i = w$ (inlet flow rate = outlet flow rate) (volume = constant)(Heater has significant heat capacitance) Electrical energy heats the coils then the coil heats the liquid.

Modeling verses Identification

+ Modeling:

- The have some physical insight
- In many cases modeling from basic laws may be too complex to be practical
- In some cases the model derived from the basic laws may contain unknown parameters

+ Identification:

- Limited validity models (depends operating point, input,...)
- Little physical insight (some parameters have no physical meaning)
- They are easy to construct and use

System Identification

- + Perform an experiment
- Collect data
- Assume a model
- Use data to estimate unknown parameters
- Validate model

Flow Chart for System Identification

Problems in Identification

- Model Selection
- + Presence of noise in the measured data
- Some variables of interest are difficult or impossible to measure
- If the system is time-varying system, problems may occur if a time-invariant model is used.

Course Objectives

- + To be able to design an identification experiment
- To be able to perform identification experiment and collect data
- To be able to solve parameter estimation problems
- + To be able to perform model validation
- To be exposed to current research on identification
- To be able to use existing software / write own programs to solve identification problems

Reading Material

+ Chapter 1 (Soderstrom & Stoica)

 \Rightarrow

Write

One idea that you completely understand from the material of this lecture.

One Question that you want to ask

Time (sec)

