SE513: Modeling \& Systems Identification I

Lecture 3
Review of Probability \& random variables

Dr. Samir Al-Amer

(c) 2007 Dr. Samir Al-Amer

Lecture Outlines

+Probability

+ Probability of multiple events
- Independent events
- Mutually exclusive events
- Non- Mutually exclusive events

Mean and variance
Continuous variable
(c) 2007 Dr. Samir Al-Amer

Probability

Let

- X be an event occurring as a result of some experiments or trials
${ }^{-} \mathrm{n}_{\mathrm{x}}$: \# of trials resulting in X
${ }^{-} \mathrm{n}$: total \# of trials
Probability of $X=p(X)=\lim _{n \rightarrow \infty} \frac{n_{x}}{n}$

Conduct an infinite number of trials
Probability of $X=\frac{\# \text { of tirals resulting in X }}{\text { total number of trials }}$
(c) 2007 Dr. Samir Al-Amer

Probability

Alternative definition/ more practical

Let

- X be an event occurring as a result of some experiments or trials
- N : \# of all possible outcomes (size of sample space)
- N_{x} : \# of outcomes favorable to X

$$
\text { Probability of } X=p(X)=\frac{N_{x}}{N}
$$

- Tossing a fair coin
- Two possible outcomes $\{\mathrm{H}, \mathrm{T}\}$
- $X=$ getting a head $\{H\}$ in first trial
- $\mathrm{N}=2, \mathrm{Nx}=1 \quad \mathrm{p}(\mathrm{X})=0.5$
(c) 2007 Dr. Samir Al-Amer

Probability Example

When a die is tossed Sample space $=\{1,2,3,4,5,6\}$ Let X be the occurrence of ' 4 '

$\mathrm{N}=6$
$N x=1$
$p(4)=1 / 6$
(c) 2007 Dr. Samir Al-Amer

Probability Example

When a die is tossed once
Sample space $=\{1,2,3,4,5,6\}$
Let X be the occurrence of an even number (2,4 or 6)
$\mathrm{N}=6$
$\mathrm{Nx}=3$

$p($ even $)=3 / 6=0.5$

Probability of Multiple Events

Independent events
Mutually exclusive events
Non- Mutually exclusive events
(c) 2007 Dr. Samir Al-Amer

Probability of Independent Events

Two events X and Y are independent if the occurrence of X does not affect the probability of Y and vice versa If X and Y are independent then $p(X Y)=p(X) p(Y)$

Probability of X and Y

(c) 2007 Dr. Samir Al-Amer

Probability of Independent Events

Two dice are tossed.
What is the probability that ' 3 ' appears twice?

- X : '3' appears at the top of the first die
- Y: '3' appears at the top of the second die
- X and Y are independent

$$
\begin{aligned}
& P(X Y)=P(X) P(Y) \\
& P(3)=1 / 6 \\
& P(33)=P(3) P(3)=1 / 36
\end{aligned}
$$

(c) 2007 Dr. Samir Al-Amer

Probability of Independent Events

If $X_{1}, X_{2}, \ldots, X_{m}$ are independent
then
$P\left(X_{1} X_{2} \ldots X_{m}\right)=P\left(X_{1}\right) P\left(X_{2}\right) \ldots P\left(X_{m}\right)$

(c) 2007 Dr. Samir Al-Amer

Notation

$p(X \mid Y)=$ probability of occurrence of event X knowing that Y occurred
If X and Y are independent \Rightarrow
$p(X \mid Y)=p(X)$
$p(Y \mid X)=p(Y)$
(c) 2007 Dr. Samir Al-Amer

Probability of Dependent Events

$$
p(X Y)=p(X) p(Y \mid X)
$$

Probability of X and Y is the product of probability of X times the probability of Y given that X occurred
X : first ball taken is blue
Y : Second ball taken is blue

$P(X)=2 / 6$
$P(Y \mid X)=1 / 5$
$P(X Y)=(2 / 6)(1 / 5)$

(c) 2007 Dr. Samir Al-Amer

Probability of Mutually Exclusive Events

Two events X and Y are mutually exclusive if the occurrence of X precludes the occurrence of Y and vice versa.
X and Y can not occur at the same time
$p(X+Y)$: the probability of occurrence of X or Y
$p(X+Y)=p(X)+p(Y)$
(c) 2007 Dr. Samir Al-Amer

Probability of Non-Mutually Exclusive Events

If X and Y are non-mutually exclusive then

$$
p(X+Y)=p(X)+p(Y)-p(X Y)
$$

What is the probability one ' 2 ' appears in two-dice toss?

(c) 2007 Dr. Samir Al-Amer

Alternative Notation

$$
\begin{aligned}
& p(X Y)=p(X \cap Y) \\
& P(X Y Z)=P(X \cap Y \cap Z)
\end{aligned}
$$

$$
p(X+Y)=p(X \cup Y)
$$

$$
p(X+Y+Z)=p(X \cup Y \cup Z)
$$

(c) 2007 Dr. Samir Al-Amer

DeMorgan's Laws

$$
\begin{aligned}
& \overline{(X \cup Y)}=\bar{X} \cap \bar{Y} \\
& \overline{(X \cap Y)}=\bar{X} \cup \bar{Y} \\
& X \cap(Y \cup Z)=(X \cap Y) \cup(X \cap Z) \\
& X \cup(Y \cap Z)=(X \cup Y) \cap(X \cup Z)
\end{aligned}
$$

(c) 2007 Dr. Samir Al-Amer

Random Variables

(c) 2007 Dr. Samir Al-Amer

Random Variables

+ Random variables are real valued functions whose domain is the sample space.
Example:
Toss a coin
Sample Space $=\{\mathrm{H}, \mathrm{T}\}$
Define the random variable X as
$X(H)=0$
$X(T)=1$

(c) 2007 Dr. Samir Al-Amer

Random Variables

Notation

Capital letters are used for Random variables
Lower case letters are used for the values a random variable takes.
Example: $p(X=x)$
The probability that the random variable X is equal to x.
$p(X=1)=$? 0.5 if we have a fair coin
(c) 2007 Dr. Samir Al-Amer

Random Variables

Example:

4 dice are tossed
x = \# of appearance of ' 5 ' on the top of four dice toss.
There are four possible values that x can take $0,1,2,3$ and 4
X is a random variable. It is a number that is assigned to each possible events
(c) 2007 Dr. Samir Al-Amer

Example

Define $F(x)$ as the frequency of occurrence of the event associated with x
Four dice are tossed 100 times

(c) 2007 Dr. Samir Al-Amer

Random Variables

Example

$X=$ life length of a transistor $=\{x \mid 0 \leq x \leq \infty\}$

(c) 2007 Dr. Samir Al-Amer

Continuous Random Variable

A random variable is continuous if it takes on the infinite number of possible values associated with intervals of real numbers

(c) 2007 Dr. Samir Al-Amer

Probability Functions

Probability Density Function

$$
p(x)
$$

Properties
$p(x) \geq 0$
$p(-\infty)=0$
$p(\infty)=0$
$p(a \leq x \leq b)=P(b)-P(a)$

Cumulative Distribution Function

$$
P(x)=p(X \leq x)
$$

Properties
$0 \leq P(x) \leq 1$
$P(-\infty)=0$
$P(\infty)=1$
$\frac{d P(x)}{d x} \geq 0$
$P(x)=\int_{-\infty}^{x} p(x) d x$
(c) 2007 Dr. Samir Al-Amer

Mean and Variance

(c) 2007 Dr. Samir Al-Amer

Random Variables

Example:

4 dice are tossed
x = \# of appearance of ' 5 ' on the top of four dice toss.
There are four possible values that x can take $0,1,2,3$ and 4
X is a random variable. It is a number that is assigned to each possible events
(c) 2007 Dr. Samir Al-Amer

Example

$$
\begin{array}{llll}
\mathrm{x} & \mathrm{~F}(\mathrm{x}) & \mathrm{xF}(\mathrm{x}) & \mathrm{x}^{2} \mathrm{~F}(\mathrm{x}) \\
0 & 48 & 0 & 0 \\
1 & 39 & 39 & 39 \\
2 & 11 & 22 & 44 \\
3 & 2 & 6 & 18 \\
4 & 0 & 0 & 0
\end{array}
$$

Sums
10067
101
(c) 2007 Dr. Samir Al-Amer

Mean and Variance

$$
\begin{aligned}
& \text { Mean }=E\{x\}=\bar{x}=\frac{\sum x F(x)}{\sum F(x)} \\
& \text { Variance }=E\left\{x^{2}\right\}=\frac{\sum(x-\bar{x})^{2} F(x)}{\sum F(x)}=\lambda^{2}
\end{aligned}
$$

standard deviation $=\lambda$
Third Central Moment $=\frac{\sum(x-\bar{x})^{3} F(x)}{\sum F(x)}$
(c) 2007 Dr. Samir Al-Amer

Mean and Variance

Mean $=E\{x\}=\bar{x}=\int_{-\infty}^{\infty} x p(x) d x$
$E\left\{x^{2}\right\}=\int_{-\infty}^{\infty} x^{2} p(x) d x$
Variance $V\{x\}=\sigma_{x}^{2}=E\left\{(x-E\{x\})^{2}\right\}=E\left\{x^{2}\right\}-(E\{x\})^{2}$
Properties of $\mathrm{E}\{$.
$E\{a X\}=a E\{X\}$
$E\{a X+b\}=a E\{X\}+b$
$V\{a X+b\}=a^{2} V(X)$

Mean and Variance

Example

x is a random variable with $p(z)= \begin{cases}e^{-z} & z>0 \\ 0 & z<0\end{cases}$
$E\{x\}=\int_{-\infty}^{\infty} x p(x) d x=\int_{0}^{\infty} x e^{-x} d x=1$
$E\left\{x^{2}\right\}=\int_{-\infty}^{\infty} x^{2} p(x) d x=\int_{0}^{\infty} x^{2} e^{-x} d x=2$
Variance $V\{x\}=E\left\{x^{2}\right\}-(E\{x\})^{2}=2-1=1$
(c) 2007 Dr. Samir Al-Amer

Reading Material

Chapter 1 J.A. Borrie. Stochastic Systems For Engineers

