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Lecture 1

Introduction to Numerical Methods
S

= What are NUMERICAL METHODS?
= Why do we need them?

= Topics covered in SE301.

Reading Assignment: pages 3-10 of text book
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Numerical Methods

Numerical Methods:

Algorithms that are used to obtain numerical
solutions of a mathematical problem.

Why do we need them?
1. No analytical solution exists,

2. An analytical solution is difficult to obtain
or not practical.
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What do we need

Basic Needs in the Numerical Methods:

® Practical:
can be computed in a reasonable amount of time.

® Accurate:
Good approximate to the true value

Information about the approximation error
(Bounds, error order,... )
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= Taylor Theorem = Solution of linear

= Number Representation Equations
= Solution of nonlinear = Least Squares curve
Equations fitting

=~ Interpolation
= Numerical Differentiation
= Numerical Integration

= Solution of ordinary
differential equations

= Solution of Partial
differential equations
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Solution of Nonlinear Equations

= Some simple equations can be solved analytically
x°+4x+3=0

. . ~ 4+ 4/4% -4
Analytic  solution  roots = \/2(1) (1)(3)

x=-1and x = -3
= Many other equations have no analytical solution

N

9 2 _
A 2XT 40 O> No analytic  solution
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Methods for solving Nonlinear
Equations

o Bisection Method
o Newton-Raphson Method
o Secant Method
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Solution ot Systems of
Linear Equations

X, +X, =3

X, +2X, =5

We can solve it as

X, =3-X,, 3—X, +2X, =5
=> X, =2, % =3-2=1

What to do if we have

1000 equations in 1000 unknowns
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Cramer’s Rule 1s not practical

Cramer's Rule can be used to solve the system

3 1‘ 1 3

5 2 1 5
xl:—l 121, )sz—l 122

AP

But Cramer's Rule is not practical for large problems.
To solve N equations in N unknowns we need (N +1)(N —1)N!

multiplications.
To solvea 30 by 30 system, 2.3x10%° multiplications are needed.

A super computer needs more than10%° years to compute.
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Methods for solving Systems of Linear
Equations

o Nalve Gaussian Elimination

o Gaussian Elimination with Scaled
Partial pivoting

o Algorithm for Tri-diagonal
Equations
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Curve Fitting

= Glven a set of data

X 0 1 2
y 05 103 21.3

= Select a curve that best fit the data. One
choice Is find the curve so that the sum of
the square of the error is minimized.
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Interpolation

= Given a set of data

x 0 1 2
yi 05 103 153

= find a polynomial P(x) whose graph
passes through all tabulated points.

y; = P(x;) if x;1s In the table
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Methods for Curve Fitting

o Least Squares

o Linear Regression

o Nonlinear least Squares Problems
o Interpolation

o Newton polynomial interpolation
o Lagrange interpolation
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Integration

= Some functions can be integrated
analytically

3 3

jxdx:ix2 N

1 2 |, 2 2

But many functions have no analytical solutions

a 2
[edx =7
0
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Methods for Numerical Integration

o Upper and Lower Sums
o Trapezoid Method

o Romberg Method

o Gauss Quadrature
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Solution of Ordinary Differential Equations

A solution to the differential equation
X(¢)+3x(t)+3x(z) =0

x(0)=1Lx(0)=0

IS a function x(z) that satisfies the equations

* Analytical solutions are available for
special cases only
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Solution of Partial Differential
Equations

Partial Differential EQuations are more
difficult to solve than ordinary differential

eguations

2 2
8;1}51;}2:0
ox- Ot

1(0,2) =u(l,¢) =0, u(x,0) =sin(/x)
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Sz

Numerical Methods:

Algorithms that are
used to obtain
numerical solution of a
mathematical
problem.

We need them when

No analytical solution
exist or itis difficult
to obtain.

Topics Covered in the Course

Solution of nonlinear Equations
Solution of linear Equations

Curve fitting
Least Squares
Interpolation

Numerical Integration
Numerical Differentiation

Solution of ordinary differential
equations

Solution of Partial differential
equations
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Lecture 2
Number Representation and accurcy

= Number Representation

T x

= Normalized Floating Point Representation
= Significant Digits

= Accuracy and Precision

= Rounding and Chopping

= Reading assignment: Chapter 3

v a
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Representing Real Numbers

= You are familiar with the decimal system

312.45=3x10° +1x10* +2x10° +4x10* +5x107°

= Decimal System Base =10, Digits(0,1,...9)
= Standard Representations

+ 312 . 45
sign integral fraction
part part
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Normalized Floating Point
Representation

= Normalized Floating Point Representation

T O dl dz d3 d4 X 1071\

sign mantissa exponent

dy =0, n:integer

= No integral part,

= Advantage Efficient in representing very small or very large numbers
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Calculator Example

= sSuppose you want to compute
3.578 * 2.139
using a calculator with two-digit fractions

357 * [213]= 7.60
True answer [ NEGSSSISN
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Binary System

-~ Binary System  Base=2, Digits{0,1}
+ 0.1b,b,b, x 2”\

sign mantissa exponent

by #0 = b =1

(0.101), = (Ax2"+0x 27 +1x27°),, = (0.625),,
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/-Bit Representation

(sign: 1 bit, Mantissa 3bits,exponent 3 bits)

21 20 2—1 2—2 2—3

0 0|0

/ — v )
Sign of Sign of Vlagnitude
number exponent

Magnitude
of exponent
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Fact

= Number that have finite expansion in one numbering
system may have an infinite expansion in another
numbering system

(0.1),, = (0.000110011001100...),

= You can never represent 0.1 exactly in any computer
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Representation

Hypothetical Machine (real computers use = 23 bit mantissa)

Mantissa 2 bits exponent 2 bit sign 1 bit

Possible machine numbers
25 3125 375 4375 5 625 .75 .875
1 1.25 1.5 1.75
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0.8

0.6

0.4

0.2

Gap near zero

0.2

0.4

0.6

0.8

1.2

1.4

1.6

1.8




Remarks

= Numbers that can be exactly represented are called
machine numbers

& Difference between machine numbers is not uniform

sum of machine numbers is not necessarily a machine
number

0.25 + .3125 =0.5625 (not a machine number)
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Significant Digits

=  Significant digits are those digits that can be used with
confidence.
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Accuracy and Precision

= Accuracy Iis related to closeness to the true value

& Precision is related to the closeness to other estimated
values

SE301_Topicl (c) AL-AMER2006




Rounding and Chopping

= Rounding: Replace the number by the nearest
machine number
=  Chopping: Throw all extra digits
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True Error

Error Definitions

can be computed if the true value is known

Absolute

rue Error

E, = | true value —approximation |

true value —approximation

ADbsolute Percent Relative Error

gt:

~100

true value
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Error Definitions

Estimated error

When the true value i1s not known

EstimatedAbsoluteError

E, =| currentestimate— prevoiusestimate

currentestimate— prevoiusestimate

&, =

currentestimate

EstimatedAbsolutePercentRelativeError

*100
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Notation

We say the estimate Is correct to n decimal
digits if _
J |Error | <107

We say the estimate Is correct to n decimal
digits rounded if 1
[Error [ < = x107"

2
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Summary

= Number Representation

Number that have finite expansion in one numbering system may
have an infinite expansion in another numbering system.

= Normalized Floating Point Representation
® Efficient in representing very small or very large numbers
® Difference between machine numbers is not uniform

® Representation error depends on the number of bits used in the
mantissa.
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Lectures 3-4

Taylor Theorem
L [
= Motivation
= Taylor Theorem
= Examples

Reading assignment: Chapter 4

SE301_Topicl (c) AL-AMER2006 1



Motivation

= Wezcan easily compute expressions like
3x10

2(x+4)
But, How do you compute +/4.1, sin(0.6)?

We can use the definitionto compute
sin(0.6) ?

0.6

IS thisa practicalway?
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Taylor Series

The Taylor series expansion of f(x) about x

(2)
f(x0)+fl(x0)(x_xo)+ f (XO)

(x— xo) -

[ (xo)

2!

or

Taylor Series= Z f (%) (xg) (x— xo)
k= 0

If the series converge we can write

109= X579 (x0) (r-x0)*
k=0"""

(x—xo)3 +...
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Taylor Sertes
Example 1

Obtain Taylor series expansion of f(x) =e* about x =0
f(x)=e f(0)=1

f(x)=¢ /(0)=1

fP@W=e r90)=1

fO)=¢" FO0)=1 fork>1
e —Z SO (x) (r-x0)" —ZF

The series converges for |x
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2.5

0.5

0

-1
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Taylor Sertes
Example 2

Obtain Taylor series expansion of f(x) =sin(x) about x=0
f(x) =sin(x) f(0)=0

J"(x) = cos(x) 7'(0)=1

£ (x) ==sin(x) £@0y=0

f (3) (x) = —cos(x) f (3) (0)=-1

» (k)
sin(x):zf (xo) (x—xo)k:x—x G2
o K !

The series converges for \x < o0
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1 ) x-x/3l+x°/5!

Or sin(x)

X-x/3
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Convergence ot Taylor Series
(Observations, Example 1)

= The Taylor series converges fast (few terms
are needed) when x is near the point of
expansion. If |x-c| iIs large then more terms
are needed to get good approximation.
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Taylor Sertes
Example 3

Obtain Taylor series expansion of f(x) = 1 about x =0

1-x
1) = f(0)=1
rW=g (=1
f(z)(x)Zﬁ f(0)=2
o) = 10)=6

(L)'

. : 1
Taylor Series Expansion of e I+ x+x"+x° +....
— X
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:Example 3
remarks

= Can we apply Taylor series for x=177

= How many terms are needed to get good
approximation???

These questions will be answered using
Taylor Theorem
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Taylor Theorem

If a function f(X) posses continuous derivatives
of ordersl,2,...,(n+1) in a closed interval [a, b]

then for any ce [a, b] (n+1) terms Truncated

Taylor Series

o

Reminder
where

ARG

T ()

(x—c)"™ and & is between x and c.
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Taylor Theorem

We can apply Taylor thorem for

f(x)—l— with point of expansion c¢=0 If |x|<1

if |a,b] includes x =1 then the function and its
derivatives are not defined.
— Taylor Theorem is not applicable.
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Error Term

To get an idea about the approximation error

We can derive an upper bound on
(n+l)

f (é:) (X—C)n+1
(n+1)!

for allvalues of & between x and c.

En+1 —
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Error Term for

Example 4

How largeis the error if we replaced f(x) =e¢" by
the first 4 terms (n = 3) of its Taylor series expansion
aboutx=0 when x=0.27

f(k) (x)=e" f(k) (&) < V2 fork =1
(n+1)
_ f (5) (x_c)n+l

T ()

© 1)I(o.z)’f’+1:> E,|< 8.14268E —05
n—+1)!
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Alternative torm ot Taylor Theorem

Let f(x) have continuous derivatives of
ordersl,2,...(n+1)on aninterval /a,b/,
and x € /a,b] and x+ h e [a,b] then

n (k)
flx+n)=Y S e E, .1
P

R Al 5 e
T ()
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1aylor 1 Nncorem

Alternative forms

0. (1)
O v R

where 5 IS between x and ¢

XxX—>x+h c—x

f<k> () 10 L@
(n+1)!

where £ 1S between xand x+ 4

f(x+h)= Z
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Mean Value Theorem

If f(x) Isa continuous function on a closed interval[a, b]
and its derivativeis defined on the open interval (a, b)
then there exist & €[a, b]
dfic) _ f(b)- fla)

dx (b-a)
Proof : Use Taylor Theoremn=0,x=a,x+h =5

)= fiay+ L <) (p-a)
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Alternating Series Theorem

Consider the alternating series

S=a,—a,+a,—a, +--

A >a,>a,>a,> (The series converges
If |1 and then |s and
lim a, =0 S-S|<a,,
L N—>X0 4

S . partial sum (sum of the first n terms)

n

a,, . First omitted term
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Alternating Sertes
Example 5

1 1 1

sin(1) canbe computedusing sin(l) =1-—+

3 5 7

This is a convergent alternating series since
and lim a_ =0

n—»0

20,2020, 2"

Then
. 1 1
sin(1)—(1-1+1j =
3 5 7!
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Example 6

Obtain the Taylor series expansion

of f(x) = e about ¢ = 0.5(the center of expansion)
How large can the error be when (n +1) terms are used

to approximate e with x =17?
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Example 6

Obtain Taylor series expansion of f(x) =e**™, ¢=0.5

f(x)=e"* £(0.5)=¢*

£(x) = 2> £(0.5) = 2¢°
FA(x)=4e>*1  £2(0.5) =4¢2

f(k) (x) = ok, 2xt1 f(k) (0.5) = ok ,2

© (k)
€2x+1 _ Zf (05) (X—O.S)k
0 k!

A2 Ak
= +2¢%(x—0.5) + 4e* (x ;'5) +..+ 2k 2 (x :I'S) +...
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:Example 6
Error term

n+1

ol 264 (x—0.9)
(n+1)!

+1
‘Error‘ <n+l (x~0.5)" max ‘ez‘fﬂ

(n+1)! £4051]

‘Error‘ =

2n+1 (x_0.5)n+1 83

‘Error‘ <
(n+1)!
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Remark

= In this course all angles are assumed to
be In radian unless you are told otherwise
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Maclurine series

Find Maclurine series expansion of cos (X)

Maclurine series Is a special case of Taylor
series with the center of expansionc =0
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Taylor Sertes
Example 7

Obtain Maclurine series expansion of 7(x) = cos(x)

J (x) = cos(x) f(0)=1
/' (x) = =sin(x) /(0)=0
[P =-cos(x)  fP(0)=-1
/P (x) =sin(x) f2(0)=0

4 6

- fM0) , x* x' x
cos(x)= =]l-——t———+....
) % TR 2 A el

The series converges for x| < «
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Homework problems

= Check the course webCT for the
Homework Assignment
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