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Lecture 1
Introduction to Numerical Methods
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What are NUMERICAL METHODS?
Why do we need them?
Topics covered in SE301.

Reading Assignment: pages 3-10 of text book
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Numerical Methods
Numerical Methods:

Algorithms that are used to obtain numerical 
solutions of a mathematical problem.

Why do we need them?
1. No analytical solution exists,
2. An analytical solution is difficult to obtain

or not practical.
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What do we need
Basic Needs in the Numerical Methods:

Practical:  
can be computed in a reasonable amount of time.

Accurate: 
Good approximate to the true value
Information about the approximation error   
(Bounds, error order,… )  
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Outlines of the Course
Taylor Theorem
Number Representation
Solution of nonlinear 
Equations
Interpolation
Numerical Differentiation
Numerical Integration

Solution of linear 
Equations
Least Squares curve 
fitting
Solution of ordinary 
differential equations
Solution of Partial 
differential equations
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Solution of Nonlinear Equations

Some simple equations can be solved analytically

Many other equations have no analytical solution
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Methods for solving Nonlinear 
Equations

o Bisection Method
o Newton-Raphson Method
o Secant Method
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Solution of Systems of
Linear Equations
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Cramer’s Rule is not practical
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Methods for solving Systems of Linear 
Equations

o Naive Gaussian Elimination
o Gaussian Elimination with Scaled 

Partial pivoting
o Algorithm for Tri-diagonal 

Equations
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Curve Fitting
Given a set of data

Select a curve that best fit the data. One 
choice is find the curve so that  the sum of 
the square of the error is minimized.

x 0 1 2 
y 0.5 10.3 21.3 
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Interpolation
Given a set of data

find a polynomial P(x) whose graph 
passes through all tabulated points. 

xi 0 1 2 
yi 0.5 10.3 15.3 

 

 

  tablein  the is)( iii xifxPy =
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Methods for Curve Fitting  
o Least Squares

o Linear Regression
o Nonlinear least Squares Problems

o Interpolation
o Newton polynomial interpolation
o Lagrange interpolation
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Integration
Some functions can be integrated 
analytically
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Methods for Numerical Integration

o Upper and Lower Sums
o Trapezoid Method
o Romberg Method
o Gauss Quadrature
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Solution of Ordinary Differential Equations
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for  available are solutions Analytical  *  
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Solution of Partial Differential 
Equations
Partial Differential Equations are more 

difficult to solve than ordinary differential 
equations

)sin()0,(,0),1(),0(

022

2

2

2

xxututu
t
u

x
u

π===

=+
∂
∂

+
∂
∂



SE301_Topic1 (c) AL-AMER2006 ١٨

Summary
Numerical Methods:
Algorithms that are 
used to obtain 
numerical solution of a 
mathematical 
problem.
We need them when
No analytical solution 
exist  or  it is difficult 
to obtain.

Solution of nonlinear Equations
Solution of linear Equations
Curve fitting 

Least Squares
Interpolation

Numerical Integration
Numerical Differentiation 
Solution of ordinary differential 
equations
Solution of Partial differential 
equations

Topics Covered in the Course



Lecture 2

Number Representation and accurcy
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Number Representation
Normalized Floating Point Representation
Significant Digits
Accuracy and Precision 
Rounding and Chopping

Reading assignment: Chapter 3
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Representing Real Numbers
You are familiar with the decimal system 

Decimal System   Base =10 , Digits(0,1,…9)
Standard Representations

21012 10510410210110345.312 −− ×+×+×+×+×=

part  part    
fraction       integralsign

54.213±
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Normalized Floating Point 
Representation

Normalized Floating Point Representation

No integral part, 

Advantage Efficient in representing very small or very large numbers

integer:,0

exponent       mantissasign

10.0

1

4321

nd

dddd n

≠

×±
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Calculator Example
suppose you  want to compute 

3.578 * 2.139
using a calculator with two-digit fractions

3.57 2.13 7.60* =

7.653342True answer
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Binary System

Binary System     Base=2, Digits{0,1}

exponent       mantissasign

21.0 432
nbbb ×±

10 11 =⇒≠ bb

1010
321

2 )625.0()212021()101.0( =×+×+×= −−−
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7-Bit Representation
(sign: 1 bit, Mantissa 3bits,exponent 3 bits)
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Fact
Number that have finite expansion in one numbering 
system may have an infinite expansion in another 
numbering system

You can never represent 0.1 exactly in any computer

210 ...)011000001100110.0()1.0( =
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Representation

Hypothetical Machine (real computers use ≥ 23 bit mantissa) 

Mantissa 2 bits    exponent   2 bit       sign 1 bit

Possible machine numbers

.25   .3125   .375   .4375   .5   .625   .75   .875

1       1.25   1.5       1.75
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Representation

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Gap near zero
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Remarks

Numbers that can be exactly represented are called 
machine numbers
Difference between machine numbers is not uniform
sum of machine numbers is not necessarily a machine 

number
0.25 + .3125 =0.5625  (not a machine number)   
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Significant Digits

Significant digits are those digits that can be used with 
confidence.
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Accuracy and Precision

Accuracy is related to closeness to the true value 

Precision is related to the closeness to other estimated 
values
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Rounding and Chopping

Rounding:  Replace the number by the nearest   
machine number  

Chopping: Throw all extra digits
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Error Definitions
True Error

can be computed if the true value is known

100*
 valuetrue

ionapproximat  valuetrue
Error RelativePercent  Absolute

ionapproximat  valuetrue
Error True Absolute

t
−

=

−=

ε

tE
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Error Definitions
Estimated error 

When the true value is not known

100*
estimatecurrent 

estimate prevoius estimatecurrent 
Error RelativePercent  Absolute Estimated

estimate prevoius estimatecurrent 
Error Absolute Estimated

−
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aE

ε



SE301_Topic1 (c) AL-AMER2006 ٣٤

Notation

We say the estimate is correct to n decimal 
digits if

We say the estimate is correct to n decimal 
digits rounded if

n−≤10Error 

n−×≤ 10
2
1Error 
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Summary
Number Representation

Number that have finite expansion in one numbering system may  

have an infinite expansion in another numbering system.

Normalized Floating Point Representation
Efficient in representing very small or very large numbers
Difference between machine numbers is not uniform
Representation error depends on the number of bits used in the  
mantissa. 



Lectures 3-4

Taylor Theorem
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Motivation
Taylor Theorem 
Examples

Reading assignment: Chapter 4
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Motivation
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Taylor Series
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Taylor Series
Example 1
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Taylor Series
Example 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5
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exp(x)



SE301_Topic1 (c) AL-AMER2006 ٤١

Taylor Series
Example 2
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Convergence of Taylor Series
(Observations, Example 1)

The Taylor series converges fast (few terms 
are needed) when x is near the point of 
expansion. If  |x-c|  is large then more terms 
are needed to get good approximation.
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Taylor Series
Example 3
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Example 3
remarks

Can we apply Taylor series for x>1??

How many terms are needed to get good 
approximation???

These questions will be answered using 
Taylor Theorem 
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Taylor Theorem
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Taylor Theorem
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Error Term
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Error Term for
Example 4

?2.0=0=about 
 expansion  seriesTaylor  its of3)=(n  terms4first  the

by  =)(  replaced  weiferror   theis large How

xwhenx

exf x

( ) 0514268.82.0
)!1(

)(
)!1(

)(

1≥≤)()(

4
1

2.0

1

1
)1(

1

2.0)()(

−≤⇒
+

≤

−
+

=

=

+
+

+
+

+

EE
n
eE

cx
n

fE

kforefexf

n
n

n
n

n

kxk

ξ

ξ



SE301_Topic1 (c) AL-AMER2006 ٥٠

Alternative form of Taylor Theorem
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Taylor Theorem
Alternative forms
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Mean Value Theorem
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Alternating Series Theorem
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Alternating Series
Example 5
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Example 6
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Example 6
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Example 6
Error term
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Remark
In this course all angles are assumed to 
be in radian unless you are told otherwise  
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Maclurine series
Find Maclurine series expansion of cos (x)

Maclurine series is a special case of Taylor 
series with the center of expansion c = 0
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Taylor Series
Example 7
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Homework problems
Check the course webCT for the 
Homework Assignment
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