SE301: Numerical Methods

Topic 1:

Introduction to Numerical methods and Taylor Series

Lectures 1-4:

Dr. Samir Al-Amer (Term 071)

Lecture 1 Introduction to Numerical Methods

- What are **NUMERICAL METHODS**?
- Why do we need them?
- Topics covered in SE301.

Reading Assignment: pages 3-10 of text book

Numerical Methods

Numerical Methods:

Algorithms that are used to obtain numerical solutions of a mathematical problem.

Why do we need them?

- 1. No analytical solution exists,
- 2. An analytical solution is difficult to obtain or not practical.

What do we need

Basic Needs in the Numerical Methods:

- Practical:
 can be computed in a reasonable amount of time.
- Accurate:
 - Good approximate to the true value
 - Information about the approximation error (Bounds, error order,...)

Outlines of the Course

- Taylor Theorem
- Number Representation
- Solution of nonlinear Equations
- Interpolation
- Numerical Differentiation
- Numerical Integration

- Solution of linear Equations
- Least Squares curve fitting
- Solution of ordinary differential equations
- Solution of Partial differential equations

Solution of Nonlinear Equations

Some simple equations can be solved analytically

$$x^2 + 4x + 3 = 0$$

Analytic solution $roots = \frac{-4 \pm \sqrt{4^2 - 4(1)(3)}}{2(1)}$

$$x = -1$$
 and $x = -3$

Many other equations have no analytical solution

$$x^{9} - 2x^{2} + 5 = 0$$
 No analytic solution
$$x = e^{-x}$$

Methods for solving Nonlinear Equations

- Bisection Method
- Newton-Raphson Method
- Secant Method

Solution of Systems of Linear Equations

$$\mathbf{X}_1 + \mathbf{X}_2 = 3$$

$$\mathbf{X}_1 + 2\mathbf{X}_2 = 5$$

We can solve it as

$$\mathbf{X}_1 = 3 - \mathbf{X}_2,$$

$$x_1 = 3 - x_2$$
, $3 - x_2 + 2x_2 = 5$

$$\Rightarrow x_2 = 2, x_1 = 3 - 2 = 1$$

What to do if we have

1000 equations in 1000 unknowns

Cramer's Rule is not practical

Cramer's Rule can be used to solve the system

$$x_1 = \frac{\begin{vmatrix} 3 & 1 \\ 5 & 2 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}} = 1, \quad x_2 = \frac{\begin{vmatrix} 1 & 3 \\ 1 & 5 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix}} = 2$$

But Cramer's Rule is not practical for large problems.

To solve N equations in N unknowns we need (N+1)(N-1)N! multiplications.

To solve a 30 by 30 system, 2.3×10^{35} multiplications are needed.

A super computer needs more than 10^{20} years to compute.

Methods for solving Systems of Linear Equations

- Naive Gaussian Elimination
- Gaussian Elimination with Scaled Partial pivoting
- Algorithm for Tri-diagonal Equations

Curve Fitting

Given a set of data

X	0	1	2
y	0.5	10.3	21.3

Select a curve that best fit the data. One choice is find the curve so that the sum of the square of the error is minimized.

Interpolation

Given a set of data

Xi	0	1	2	
y _i	0.5	10.3	15.3	

= find a polynomial P(x) whose graph passes through all tabulated points.

$$y_i = P(x_i)$$
 if x_i is in the table

Methods for Curve Fitting

- Least Squares
 - Linear Regression
 - Nonlinear least Squares Problems
- Interpolation
 - Newton polynomial interpolation
 - Lagrange interpolation

Integration

Some functions can be integrated analytically

$$\int_{1}^{3} x dx = \frac{1}{2} x^{2} \Big|_{1}^{3} = \frac{9}{2} - \frac{1}{2} = 4$$

But many functions have no analytical solutions

$$\int_{0}^{a} e^{-x^{2}} dx = ?$$

Methods for Numerical Integration

- Upper and Lower Sums
- Trapezoid Method
- Romberg Method
- Gauss Quadrature

Solution of Ordinary Differential Equations

A solution to the differential equation

$$\ddot{x}(t) + 3\dot{x}(t) + 3x(t) = 0$$

$$\dot{x}(0) = 1; x(0) = 0$$

is a function x(t) that satisfies the equations

* Analytical solutions are available for special cases only

Solution of Partial Differential Equations

Partial Differential Equations are more difficult to solve than ordinary differential equations

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial t^2} + 2 = 0$$

$$u(0,t) = u(1,t) = 0, \ u(x,0) = \sin(\pi x)$$

Summary

- Numerical Methods:
 - Algorithms that are used to obtain numerical solution of a mathematical problem.
- We need them when No analytical solution exist or it is difficult to obtain.

Topics Covered in the Course

- Solution of nonlinear Equations
- Solution of linear Equations
- Curve fitting
 - Least Squares
 - Interpolation
- Numerical Integration
- Numerical Differentiation
- Solution of ordinary differential equations
- Solution of Partial differential equations

Lecture 2 Number Representation and accurcy

- Number Representation
- Normalized Floating Point Representation
- Significant Digits
- Accuracy and Precision
- Rounding and Chopping

Reading assignment: Chapter 3

Representing Real Numbers

You are familiar with the decimal system

$$312.45 = 3 \times 10^{2} + 1 \times 10^{1} + 2 \times 10^{0} + 4 \times 10^{-1} + 5 \times 10^{-2}$$

- Decimal System Base = 10 , Digits(0,1,...9)
- Standard Representations

Normalized Floating Point Representation

Normalized Floating Point Representation

$$\pm 0. d_1 d_2 d_3 d_4 \times 10^n$$

sign mantissa exponent

$$d_1 \neq 0$$
, n :integer

- No integral part,
- Advantage Efficient in representing very small or very large numbers

Calculator Example

suppose you want to compute 3.578 * 2.139 using a calculator with two-digit fractions

3.57

2.13 = 7.60

True answer

7.653342

Binary System

Binary System Base=2, Digits
$$\{0,1\}$$
 $\pm 0.1 b_2 b_3 b_4 \times 2^n$
sign mantissa exponent

$$b_1 \neq 0 \implies b_1 = 1$$

$$(0.101)_2 = (1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3})_{10} = (0.625)_{10}$$

7-Bit Representation

(sign: 1 bit, Mantissa 3bits, exponent 3 bits)

SE301_Topic1

Fact

Number that have finite expansion in one numbering system may have an infinite expansion in another numbering system

$$(0.1)_{10} = (0.000110011001100...)_2$$

You can never represent 0.1 exactly in any computer

Representation

Hypothetical Machine (real computers use ≥ 23 bit mantissa)

Mantissa 2 bits exponent 2 bit sign 1 bit

Possible machine numbers

.25 .3125 .375 .4375 .5 .625 .75 .875

1 1.25 1.5 1.75

Remarks

- Numbers that can be exactly represented are called machine numbers
- Difference between machine numbers is not uniform sum of machine numbers is not necessarily a machine number

0.25 + .3125 = 0.5625 (not a machine number)

Significant Digits

Significant digits are those digits that can be used with confidence.

Accuracy and Precision

- Accuracy is related to closeness to the true value
- Precision is related to the closeness to other estimated values

Rounding and Chopping

- Rounding: Replace the number by the nearest machine number
- Chopping: Throw all extra digits

Error Definitions

True Error

can be computed if the true value is known

Absolute True Error

$$E_t = |$$
 true value – approximation |

Absolute Percent Relative Error

$$\varepsilon_{\rm t} = \left| \frac{\rm true\ value - approximation}{\rm true\ value} \right| *100$$

Error Definitions

Estimated error

When the true value is not known

EstimatedAbsoluteError

$$E_a = |$$
 currentestimate-prevoiusestimate|

Estimated Absolute Percent Relative Error

$$\varepsilon_a = \left| \frac{\text{currentestimate-prevoiusestimate}}{\text{currentestimate}} \right| *100$$

Notation

We say the estimate is correct to n decimal digits if $|Error| \le 10^{-n}$

We say the estimate is correct to n decimal digits **rounded** if

 $\left| \text{Error } \right| \le \frac{1}{2} \times 10^{-n}$

Summary

Number Representation

Number that have finite expansion in one numbering system may have an infinite expansion in another numbering system.

Normalized Floating Point Representation

- Efficient in representing very small or very large numbers
- Difference between machine numbers is not uniform
- Representation error depends on the number of bits used in the mantissa.

Lectures 3-4 Taylor Theorem

- Motivation
- Taylor Theorem
- Examples

Reading assignment: Chapter 4

Motivation

 $\stackrel{\clubsuit}{=}$ We can easily compute expressions like 3×10^{-2}

$$3\times10^{-2}$$

$$2(x+4)$$

But, How do you compute $\sqrt{4.1}$, $\sin(0.6)$?

We can use the definition to compute

is this a practical way?

Taylor Series

The Taylor series expansion of f(x) about x_0

$$f(x_0) + f'(x_0)(x - x_0) + \frac{f^{(2)}(x_0)}{2!}(x - x_0)^2 + \frac{f^{(3)}(x_0)}{3!}(x - x_0)^3 + \dots$$

or

Taylor Series =
$$\sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

if the series converge we can write

$$f(x) = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k$$

Taylor Series Example 1

Obtain Taylor series expansion of $f(x) = e^x$ about x = 0

$$f(x) = e^{x} f(0) = 1$$

$$f'(x) = e^{x} f'(0) = 1$$

$$f^{(2)}(x) = e^{x} f^{(2)}(0) = 1$$

$$f^{(k)}(x) = e^{x} f^{(k)}(0) = 1 for k \ge 1$$

$$e^{x} = \sum_{k=0}^{\infty} \frac{1}{k!} f^{(k)}(x_{0}) (x - x_{0})^{k} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}$$

The series converges for $|x| < \infty$

Taylor Series Example 2

Obtain Taylor series expansion of $f(x) = \sin(x)$ about x = 0

$$f(x) = \sin(x) \qquad f(0) = 0$$

$$f'(x) = \cos(x) \qquad f'(0) = 1$$

$$f^{(2)}(x) = -\sin(x) \qquad f^{(2)}(0) = 0$$

$$f^{(3)}(x) = -\cos(x) \qquad f^{(3)}(0) = -1$$

$$\sin(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

The series converges for $|x| < \infty$

Convergence of Taylor Series

(Observations, Example 1)

The Taylor series converges fast (few terms are needed) when x is near the point of expansion. If |x-c| is large then more terms are needed to get good approximation.

Taylor Series Example 3

Obtain Taylor series expansion of $f(x) = \frac{1}{1-x}about x = 0$

$$f(x) = \frac{1}{1 - x}$$

$$f(0) = 1$$

$$f'(x) = \frac{1}{(1-x)^2}$$

$$f(0) = 1$$

$$f^{(2)}(x) = \frac{2}{(1-x)^3}$$

$$f(0) = 2$$

$$f^{(3)}(x) = \frac{6}{(1-x)^4}$$

$$f(0) = 6$$

Taylor Series Expansion of $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots$

Example 3 remarks

 \approx Can we apply Taylor series for x>1??

How many terms are needed to get good approximation???

These questions will be answered using Taylor Theorem

Taylor Theorem

If a function f(x) posses continuous derivatives

of orders 1,2,...,(n+1) in a closed interval [a,b]

then for any $c \in [a,b]$ (n+1) terms Truncated Taylor Series

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} + E_{n+1}$$
where

Reminder

$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$
 and ξ is between x and c.

Taylor Theorem

We can apply Taylor thorem for

$$f(x) = \frac{1}{1-x}$$
 with point of expansion $c = 0$ if $|x| < 1$

if [a,b] includes x = 1 then the function and its derivatives are not defined.

 \Rightarrow Taylor Theorem is not applicable.

Error Term

To get an idea about the approximation error

We can derive an upper bound on

$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$

for all *values of* ξ between x and c.

Error Term for Example 4

How large is the error if we replaced $f(x) = e^x$ by the first 4 terms (n = 3) of its Taylor series expansion about x = 0 when x = 0.2?

$$f^{(k)}(x) = e^{x} \qquad f^{(k)}(\xi) \le e^{0.2} \quad \text{for } k \ge 1$$

$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$

$$|E_{n+1}| \le \frac{e^{0.2}}{(n+1)!} (0.2)^{n+1} \Rightarrow |E_4| \le 8.14268E - 05$$

Alternative form of Taylor Theorem

Let f(x) have continuous derivatives of orders 1,2,...(n+1) on an interval [a,b], and $x \in [a,b]$ and $x+h \in [a,b]$ then

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + E_{n+1}$$

$$E_{n+1} = \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}$$
 where ξ is between x and $x + h$

Taylor Theorem

Alternative forms

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-c)^{n+1}$$

where ξ is between x and c

$$x \to x + h$$
, $c \to x$

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + \frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}$$

where ξ is between x and x + h

Mean Value Theorem

If f(x) is a continuous function on a closed interval [a,b] and its derivative is defined on the open interval (a,b) then there exist $\xi \in [a,b]$

$$\frac{df(\xi)}{dx} = \frac{f(b) - f(a)}{(b-a)}$$

Proof : Use Taylor Theorem n = 0, x = a, x + h = b

$$f(b) = f(a) + \frac{df(\xi)}{dx} (b-a)$$

Alternating Series Theorem

Consider the alternating series

$$S = a_1 - a_2 + a_3 - a_4 + \cdots$$

If $\begin{cases} a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots \\ and \\ \lim_{n \to \infty} a_n = 0 \end{cases}$ then $\begin{cases} \text{The series converges} \\ and \\ |S - S_n| \le a_{n+1} \end{cases}$

: partial sum (sum of the first n terms)

 a_{n+1} : First omitted term

Alternating Series Example 5

 $\sin(1)$ can be computed using $\sin(1) = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots$

This is a convergent alternating series since

$$a_1 \ge a_2 \ge a_3 \ge a_4 \ge \cdots$$
 and $\lim_{n \to \infty} a_n = 0$

Then

$$\left| \sin(1) - \left(1 - \frac{1}{3!} \right) \right| \le \frac{1}{5!}$$

$$\left| \sin(1) - \left(1 - \frac{1}{3!} + \frac{1}{5!} \right) \right| \le \frac{1}{7!}$$

Example 6

Obtain the Taylor series expansion

of $f(x) = e^{2x+1}$ about c = 0.5 (the center of expansion)

How large can the error be when (n + 1) terms are used

to approximate e^{2x+1} with x = 1?

Example 6

Obtain Taylor series expansion of $f(x) = e^{2x+1}$, c = 0.5

$$f(x) = e^{2x+1} \qquad f(0.5) = e^{2}$$

$$f'(x) = 2e^{2x+1} \qquad f'(0.5) = 2e^{2}$$

$$f^{(2)}(x) = 4e^{2x+1} \qquad f^{(2)}(0.5) = 4e^{2}$$

$$f^{(k)}(x) = 2^{k} e^{2x+1} \qquad f^{(k)}(0.5) = 2^{k} e^{2}$$

$$e^{2x+1} = \sum_{k=0}^{\infty} \frac{f^{(k)}(0.5)}{k!} (x-0.5)^{k}$$

$$= e^{2} + 2e^{2}(x-0.5) + 4e^{2} \frac{(x-0.5)^{2}}{2!} + \dots + 2^{k} e^{2} \frac{(x-0.5)^{k}}{k!} + \dots$$

SE301_Topic1

Example 6 Error term

$$f^{(k)}(x) = 2^{k} e^{2x+1}$$

$$Error = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-0.5)^{n+1}$$

$$|Error| = \left| 2^{n+1} e^{2\xi+1} \frac{(x-0.5)^{n+1}}{(n+1)!} \right|$$

$$|Error| \le 2^{n+1} \frac{(x-0.5)^{n+1}}{(n+1)!} \max_{\xi \in [0.5,1]} \left| e^{2\xi+1} \right|$$

$$|Error| \le 2^{n+1} \frac{(x-0.5)^{n+1}}{(n+1)!} e^{3}$$

Remark

In this course all angles are assumed to be in radian unless you are told otherwise

Maclurine series

Find Maclurine series expansion of cos (x)

Maclurine series is a special case of Taylor series with the center of expansion c = 0

Taylor Series Example 7

Obtain Maclurine series expansion of $f(x) = \cos(x)$

$$f(x) = \cos(x) \qquad f(0) = 1$$

$$f'(x) = -\sin(x) \qquad f'(0) = 0$$

$$f^{(2)}(x) = -\cos(x) \qquad f^{(2)}(0) = -1$$

$$f^{(3)}(x) = \sin(x) \qquad f^{(3)}(0) = 0$$

$$\cos(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x)^k = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

The series converges for $|x| < \infty$

Homework problems

Check the course webCT for the Homework Assignment