SE207 Modeling and Simulation Unit 4

Standard Forms for System Models

Dr. Samir Al-Amer

Term 072

SE207 Modeling and Simulation Unit 4
 Lesson 1: State Variable Models

Dr. Samir Al-Amer
Term 072

Read Section 3.1

Outlines

- Two standard forms for models will be used.
- State variable model
- Input-output model

States (state Variables)

\square For each dynamical system, there exist a set of variables (states) such that if the values of the states are known an any reference time t_{0} and if the input is known for $t \geq t_{0}$ then the output and the states can be determined for $t \geq t_{0}$

States (State Variables)

\square States are not unique.

- The value of states summarize effect of past inputs on the system.
- Usually the number of states is equal to the number of energy storing elements (Masses and springs)
- In some cases we may have redundant states (the number of states is less than the number of energy storing elements)

State Variable Models

Example (1-input,1-output and 2-states)

$$
\begin{aligned}
& \dot{q}_{1}=2 q_{1}+3 q_{2}+b_{1} u \\
& \dot{q}_{2}=q_{1}+0.5 q_{2}+b_{2} u \\
& y=q_{1}+0.5 u
\end{aligned}
$$

- State Equations

- Output Equation
- u: input,

ㅁ y : output,

- q_{i} :states (or state variables)

State Variable Models

$$
\begin{array}{lll}
\dot{q}_{1}=a_{11} q_{1}+a_{12} q_{2}+a_{13} q_{3} & +b_{11} u_{1}+b_{12} u_{2} & \text { State } \\
\dot{q}_{2}=a_{21} q_{1}+a_{22} q_{2}+a_{23} q_{3} & +b_{21} u_{1}+b_{22} u_{2} & \text { Equations } \\
\dot{q}_{3}=a_{31} q_{1}+a_{32} q_{2}+a_{33} q_{3} & +b_{31} u_{1}+b_{32} u_{2} & \\
& & \\
y_{1}=c_{11} q_{1}+c_{12} q_{2}+c_{13} q_{3} & +d_{11} u_{1}+d_{12} u_{2} & \text { Output } \\
y_{2}=c_{21} q_{1}+c_{22} q_{2}+c_{23} q_{3} & +d_{21} u_{1}+d_{22} u_{2} & \text { Equations }
\end{array}
$$

- State Equations: set of first order ODEs.

- The derivative of a state = algebraic function of states and inputs
- Output Equation:
- Output = algebraic function of states and inputs

Typical Choice of the States

Typical choice of states for translational Mechanical systems

- the number of states is equal to the number of energy storing elements (Masses and springs)
■ Some times we have less than that number
- Select velocity of a mass as a state
[Select elongation of a spring as a state
- States are not unique.

Example 1

\# of states $=2$
Velocity of mass
V
Elongation of spring x (other choices are possible)

Example

State Equations :
$\dot{\chi}=v$
$\dot{v}=\frac{1}{M}\left[-B v-K x+f_{a}(t)\right]$

$$
\begin{aligned}
& f_{k}=K x \\
& f_{B}=B v \\
& f_{I}=M \dot{v} \\
& K x+B v+M \dot{v}=f_{a}(t)
\end{aligned}
$$

Output Equation :
$y_{1}=k x$
$y_{2}=v$
$y_{3}=\frac{-B}{M} v-\frac{-K}{M} x+\frac{1}{M} f_{a}(t)$

Example

State Variable Model

$$
\begin{aligned}
& \overline{\dot{x}}=\bar{v} \\
& \dot{v}=\frac{1}{M}\left[-B v-K x+f_{a}(t)\right]
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}=v \\
& \text { State equations } \\
& \text { Output equations } \\
& y_{3}=\frac{-B}{M} v-\frac{K}{M} x+\frac{1}{M} f_{a}(t)
\end{aligned}
$$

Example 2

Input: fa(t)
Outputs: Tensile force in spring 2

Total momentum of the masses

Example 2

\# of States = \# of energy storing elements =4 (2 springs \& 2 masses)
One possible choice of states : $\mathrm{x} 1, \mathrm{x} 2, \mathrm{v} 1, \mathrm{v} 2$
Elongation of spring 1= $\mathbf{x 1 ;} \quad$ Elongation of spring 2= $\mathbf{x} 2-x 1$
Velocity of mass $1=\mathrm{v} 1 ; \quad$ Velocity of mass $2=\mathrm{v} 2 ;$

Example 2

Draw freebody diagrams

Example 2

Express all forces in terms of states (x1,x2,v1,v2)

$$
\begin{aligned}
& f_{k 1}=K_{1} x_{1} \\
& f_{I 1}=M_{1} \dot{v}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \longleftarrow f_{k 2}=K_{2}\left(x_{2}-x_{1}\right) \\
& \longleftrightarrow \cdots f_{B}=B\left(v_{2}-v_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{k 2}=K_{2}\left(x_{2}-x_{1}\right) \\
& f_{B}=B\left(v_{2}-v_{1}\right) \\
& f_{I 2}=M_{2} \dot{v}_{2}
\end{aligned}
$$

Example

State Variable Model

$$
\begin{aligned}
& \dot{x}_{1}=v_{1} \\
& \dot{v}_{1}=\frac{1}{M_{1}}\left[-\left(K_{1}+K_{2}\right) x_{1}-B v_{1}+K_{2} x_{2}+B v_{2}\right] \\
& \dot{x}_{2}=v_{2} \\
& \dot{v}_{1}=\frac{1}{M_{2}}\left[K_{2} x_{1}+B v_{1}-K_{2} x_{2}-B v_{2}+f_{a}(t)\right] \\
& \text { にニニニニニニニニニニニニニニニニニニニニニニニニニニニニさ } \\
& y_{1}=K_{2}\left(x_{2}-x_{1}\right) \quad \text { Output equations } \\
& y_{2}=M_{1} v_{1}+M_{2} v_{2} \\
& \text { Output equations }
\end{aligned}
$$

Example 2 Alternative choice of states

\# of States = \# of energy storing elements =4 (2 springs \& 2 masses)
Alternative choice One possible choice of states : $\mathrm{x} 1, \mathrm{xr}=\mathrm{x} 2-\mathrm{x} 1, \mathrm{v} 1, \mathrm{vr}=\mathrm{v} 2-\mathrm{v} 1$
Elongation of spring 1= $\mathbf{x 1}$; Elongation of spring $2=\mathbf{x r}$
Velocity of mass $1=\mathrm{v} 1 ; \quad$ Velocity of mass $2=\mathrm{vr}+\mathrm{v} 1$;

Example 2

Express all forces in terms of states (x1,x2,v1,v2)

$$
\begin{aligned}
& f_{k 1}=K_{1} x_{1} \\
& f_{I 1}=M_{1} \dot{v}_{1}
\end{aligned}
$$

$$
\begin{aligned}
& f_{k 2}=K_{2} x_{R} \\
& f_{B}=B v_{R}
\end{aligned}
$$

$f_{k 2}=K_{2} X_{R}$
$f_{B}=B v_{R}$
$f_{I 2}=M_{2}\left(\dot{v}_{2}+\dot{v}_{R}\right) \nleftarrow \cdots$.

Example

State Variable Model

$$
\begin{aligned}
& \text { | } \dot{x}_{1}=v_{1} \\
& \dot{v}_{1}=\frac{1}{M_{1}}\left[-K_{1} x_{1}+K_{2} x_{R}+B v_{R}\right] \\
& \dot{X}_{R}=v_{R} \\
& \dot{v}_{R}=\frac{1}{M_{1} M_{2}}\left[K_{1} M_{2} X_{1}-K_{2}\left(M_{1}+M_{2}\right) x_{R}-B\left(M_{1}+M_{2}\right) v_{R}+M_{1} f_{a}(t)\right] \\
& \text { しニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ』 } \\
& y_{1}=K_{2} x_{R} \\
& \text { Output equations } \\
& \text { I } y_{2}=\left(M_{1}+M_{2}\right) v_{1}+M_{2} v_{R} \ldots \ldots
\end{aligned}
$$

Example 2

Two possible state variable models for the system

Two state variable models were obtained for the same system

They are different but they represent the same relationship between inputs and outputs.

Example 3

Input $\mathrm{fa}(\mathrm{t})$
Output : displacement of the mass-less junction

Example 2

Express all forces in terms of states (x1,x2,v1,v2)

$$
\begin{aligned}
& f_{a}(t) \longleftrightarrow \begin{array}{ll}
& M \dot{v}_{1} \\
& B_{1} v_{1} \\
& K_{1}\left(x_{1}-x_{2}\right) \\
K_{1}\left(x_{1}-x_{2}\right) \longleftrightarrow & B_{2} \dot{x}_{2}+K_{2} x_{2}
\end{array}
\end{aligned}
$$

Example

State Variable Model

$$
\begin{aligned}
& \dot{x}_{1}=v_{1} \\
& \dot{v}_{1}=\frac{1}{M}\left[-K_{1} x_{1}-B_{1} v_{1}+K_{1} x_{2}+f_{a}(t)\right]
\end{aligned}
$$

State equations
$\dot{x}_{2}=\frac{1}{B_{2}}\left[K_{1} x_{1}-K_{2} x_{2}-K_{1} x_{2}\right]$
っニニニニニニニニニニニニニニニニニニニニニニニニニニニニニ」
$y_{1}=x_{2}$
Output equations

State Variable Models

- States are not unique.
- The value of states summarize effect of past inputs on the system.
- Usually the number of states is equal to the number of energy storing elements (Masses and springs)
- In some cases we may have redundant states (the number of states is less than the number of energy storing elements)
- Typical choice of states: velocity of mass and elongation of spring.
- State variable model:
- State equations (set of first order ODE, involves states and inputs)
- Output equations (algebraic equations, involves states and inputs)

SE207 Modeling and Simulation Unit 4

Lesson 2: Input-Output (I/O) Models
Dr. Samir Al-Amer
Term 072

Read Section 3.2

Outlines

- Two standard forms for models will be used.
- State variable model
- Input-output model

States (State Variables)

\square States are not unique.

- The value of states summarize effect of past inputs on the system.
- Usually the number of states is equal to the number of energy storing elements (Masses and springs)
- In some cases we may have redundant states (the number of states is less than the number of energy storing elements)

State Variable Models

Example (1-input,1-output and 2-states)

$$
\begin{aligned}
& \dot{q}_{1}=2 q_{1}+3 q_{2}+b_{1} u \\
& \dot{q}_{2}=q_{1}+0.5 q_{2}+b_{2} u \\
& y=q_{1}+0.5 u
\end{aligned}
$$

- State Equations

- Output Equation
- u: input,

ㅁ y : output,

- q_{i} :states (or state variables)

Input-Output Models

- ODE that contains the inputs, the output and their derivatives and no other variables.
]

$$
M \ddot{x}+K x+B \dot{x}=f_{a}(t)
$$

Output and its derivatives input

State Variable and Input-output Models

$$
\dot{x}=v
$$

Input: $\mathrm{fa}(\mathrm{t})$
Output : displacement x

$$
\dot{v}=\frac{1}{M}\left[-B v-K x+f_{a}(t)\right]
$$

$$
M \ddot{x}+K x+B \dot{x}=f_{a}(t)
$$

$$
y=x
$$

State Variable Model

Example

 Input-Output Models$$
\dot{v}=\frac{1}{M}\left[-B v-K x+f_{a}(t)\right]
$$

State variable model
$\left\{\begin{array}{l}y_{1}=x \\ M \ddot{x}+K x+B \dot{x}=f_{a}(t)\end{array}\right.$
Input-Output
Model

Example Input-Output Models

For simple problems, you may be able to obtain the I/O model directly by expressing all forces (in the free body diagram) in terms of inputs, outputs and their derivatives.

Input-Output Models

$M \ddot{X}_{1}+B_{1} \dot{x}_{1}+K_{1} x_{1}-K_{1} x_{2}=f_{a}(t)$
$B_{2} \dot{x}_{2}+\left(K_{1}+K_{1}\right) x_{2}-K_{1} x_{2}=0$
input : $f_{a}(t)$
output: x_{1}
Eliminate x_{2}, \dot{x}_{2}

Input-Output Models

$M \ddot{x}_{1}+B_{1} \dot{x}_{1}+K_{1} x_{1}-K_{1} x_{2}=f_{a}(t)$
$B_{2} \dot{x}_{2}+\left(K_{1}+K_{1}\right) x_{2}-K_{1} x_{2}=0$
solve for $x_{2} \Rightarrow x_{2}=\left(\frac{1}{K_{1}}\right)\left(M \ddot{x}_{1}+B_{1} \dot{x}_{1}+K_{1} x_{1}-f_{a}(t)\right)$
differentiate $x_{2} \Rightarrow \dot{x}_{2}=\left(\frac{1}{K_{1}}\right)\left(M \dddot{x}_{1}+B_{1} \ddot{x}_{1}+K_{1} \dot{x}_{1}-\dot{f}_{a}(t)\right)$
subsitute x_{2} and \dot{x}_{2} and simplify to get input-output model $M B_{2} \dddot{X}_{1}+\left(B_{1} B_{2}+K_{1} M+K_{2} M\right) \ddot{x}_{1}+\left(B_{2} K_{1}+K_{1} B_{1}+K_{2} B_{1}\right) \dot{X}_{1}$
$+K_{1} K_{2} x_{1}=B_{2} \dot{f}_{a}+\left(K_{1}+K_{2}\right) f_{a}$

Input-Output Models

$$
\begin{aligned}
& M B_{2} \dddot{X}_{1}+\left(B_{1} B_{2}+K_{1} M+K_{2} M\right) \ddot{x}_{1}+\left(B_{2} K_{1}+K_{1} B_{1}+K_{2} B_{1}\right) \dot{x}_{1} \\
& +K_{1} K_{2} x_{1}=B_{2} \dot{f}_{a}+\left(K_{1}+K_{2}\right) f_{a}
\end{aligned}
$$

This equation involves the input and its derivatives ($\dddot{X}_{1}, \ddot{x}_{1}, \dot{x}_{1}, x_{1}$) and the output and its derivatives (\dot{f}_{a}, f_{a})
and no other variables

Reduction using differentiator operator

Define $\quad \mathrm{p}$: differentiator operator
$p x$ means $\frac{d}{d t} x$ and $p^{2} x$ means $\frac{d^{2}}{d t^{2}} x$

$$
\left(p^{2}+2 p+4\right) x \text { means } \frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+4 x
$$

Apply thep operator to
$2 \ddot{x}_{1}+3 \dot{x}_{1}+5 x_{1}=f_{a}(t)$
$2 p^{2} x+3 p x+5 x=f_{a}$ or $\left(2 p^{2}+3 p+5\right) x=f_{a}$

Reduction using differentiator operator

The differentiator operator converts the differential equations into algebraic equations in the p operator which are easier to manipulate.

$$
\begin{gathered}
2 \ddot{x}_{1}+3 \dot{x}_{1}+5 x_{1}=f_{a}(t) \\
\Downarrow \\
2 p^{2} x+3 p x+5 x=f_{a}
\end{gathered}
$$

Input-Output Models

$M \ddot{x}_{1}+B_{1} \dot{x}_{1}+K_{1} x_{1}-K_{1} x_{2}=f_{a}(t)$
$B_{2} \dot{x}_{2}+\left(K_{1}+K_{1}\right) x_{2}-K_{1} x_{2}=0$
input : $f_{a}(t)$, output: x_{1}
$M p^{2} x_{1}+B_{1} p x_{1}+K_{1} x_{1}-K_{1} x_{2}=f_{a}(t)$
$B_{2} p x_{2}+\left(K_{1}+K_{1}\right) x_{2}-K_{1} x_{2}=0$
$\Rightarrow\left(B_{2} p+K_{1}+K_{1}\right) x_{2}-K_{1} x_{1}=0$
$\Rightarrow M\left(M p^{2} x_{1}+B_{1} p+K_{1}\right) x_{1}-K_{1} x_{2}=f_{a}(t)$

Input-Output Models

$$
\begin{aligned}
& M \ddot{x}_{1}+B_{1} \dot{x}_{1}+K_{1} x_{1}-K_{1} x_{2}=f_{a}(t) \\
& B_{2} \dot{x}_{2}+\left(K_{1}+K_{1}\right) x_{2}-K_{1} x_{2}=0 \\
& \text { input : } \quad f_{a}(t), \quad \text { output : } \quad x_{1}
\end{aligned}
$$

Remove x_{2}, \dot{x}_{2}
The final equation contains f_{a}, x_{1} and their derivatives only

Input-Output Models

To eliminate x_{2}, \dot{x}_{2}
$\left(B_{2} p+K_{1}+K_{1}\right) x_{2}=K_{1} x_{1}$
muliply both sides by $\left(B_{2} p+K_{1}+K_{1}\right)$
$\left(B_{2} p+K_{1}+K_{1}\right) M\left(M p^{2} x_{1}+B_{1} p+K_{1}\right) x_{1}-\left(B_{2} p+K_{1}+K_{1}\right) K_{1} x_{2}$
$=\left(B_{2} p+K_{1}+K_{1}\right) f_{a}(t)$
Now replace $\left(B_{2} p+K_{1}+K_{1}\right) x_{2}$ by $K_{1} x_{1}$
$M\left(B_{2} p+K_{1}+K_{1}\right)\left(M p^{2} x_{1}+B_{1} p+K_{1}\right) x_{1}-K_{1} x_{1}$
$=\left(B_{2} p+K_{1}+K_{1}\right) f_{a}(t)$

Input-Output Models

Replace p operator by $\frac{d}{d t}$ and simplify
$M B_{2} \dddot{X}_{1}+\left(B_{1} B_{2}+K_{1} M+K_{2} M\right) \ddot{x}_{1}$
$+\left(B_{2} K_{1}+K_{1} B_{1}+K_{2} B_{1}\right) \dot{X}_{1}+K_{1} K_{2} x_{1}$
$=B_{2} \dot{f}_{a}+\left(K_{1}+K_{2}\right) f_{a}$

State space versus input/output models

- The order of the I/O model = number of states (unless some states are redundant or some states have no effect on output)
- State variable models are more convenient for solution and for modeling MIMO (multi-input-multi-output) systems

