
CISE302: Linear Control Systems 

4. Inverse Laplace Transform  
 
Outlines: 
 Introduction  
 Partial Fraction Expansion 

 Simple poles case 
 Complex poles case 
 Repeated pole case 

 Inverse transform of non-strictly 
proper functions 

 Learning Objectives: 
 To be able to obtain inverse Laplace 

transform of rational functions 
 
  
 
 

 
4.1 Introduction 
 
If )(sF  is the Laplace transform of )(tf  then we can say that )(tf  is the inverse 

Laplace transform of )(sF . The following notation is used 
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We have seen in Chapter 3 that  
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The inverse transform of )(sF  can be obtained using the formula  
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Where α   is a real number that is greater than the real part of any singularity of F(s). 
The complex integral above is usually difficult to evaluate. Instead the approach that is 
considered here is to express )(sF  as the sum of simple terms that are usually available 
in the Laplace transform Table. Before discussing the way to do this, the following 
property of inverse Laplace transform are listed. These properties can be derived from 
the properties of Laplace transform listed in Chapter 1 and therefore no proof for these 
properties will be given here. 
  
The Laplace transform is a linear transformation  

{ } { } { })()()()( 111 sGbLsFaLsGbsFaL −−− +=+  
This is simple to prove from the definition of the inverse transform but it has a major 
impact. It allows us to simplify the computation of the inverse transform. If we can 
express )(sF  as the sum of simple functions that can be inverted easily then the 
inverse transform is simply the sum of the individual inverses.  
 

Example 4.1 

Obtain the inverse Laplace transform of 
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Simple algebraic manipulation allows us to write 
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 The linearity property allows us to  
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Details of the procedure to do this are illustrated in the next section. 
 

4.2 Partial Fraction Expansion 
When the function F(s) is a rational function then it can be expanded as the sum of 
simple terms whose inverse Laplace transform is easy to obtain.  Three special cases are 
discussed in this section. The following definitions are essential to the remaining part of 
this chapter. 
 
Definition 
A complex function )(sF  is said to be a rational function if can be expressed as a ratio 

of two polynomials. 
)(
)()(

sD
sNsF =  where N(s) and D(s) are polynomials in the complex 

variable s.  
 
Definition 
A complex function )(sF  is said to be a rational function if can be expressed as a ratio 

of two polynomials. 
)(
)()(

sD
sNsF =  where N(s) and D(s) are polynomials in the complex 

variable s. 
 
 
Definition 
The function F(s) is said to be proper if it is rational and degree of N(s) ≤ degree of 
D(s). It is strictly proper if degree of N(s) is strictly less than degree of D(s). 
 
 
 
Definition 
A complex valued function )(sF  is said to have a singularity at a point in the s-plane if 
the function or some of its derivatives does not exist at that point. 
 
The most common type of singularity is the pole which is defined next.  
 
 
 
Definition 

A complex valued function 
)(
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sNsF =  is said to have a pole of order r at   s = p if  
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 Has a finite non-zero value. If r is one then the pole is called a simple 

pole if r >1 then it is a repeated pole.  
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Example 4.2 

)1(
3)( 2 +

−
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ss
ssF  has a simple pole at 1−=s  and double (repeated) pole as 0=s . 

)1(
3)( 2 +
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ss
ssF  has three simple poles ( at 1,1,0 −−−=s ). 

An important step in partial fraction expansion is to factor the denominator of F(s) into 
factors. See Appendix B for review of factoring polynomials. 
 

4.2.1 Distinct Pole Case 
In this subsection we consider the case when all the poles of the system are simple. 
Assume F(s) is strictly proper with n simple poles ( real or complex)    
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then F(s) can be expressed as 
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The coefficients ia  can obtained in different ways. A simple and convenient way is  
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Once the coefficients are obtained, the inverse Laplace transform is given by 
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Example 4.3 

Obtain the inverse Laplace transform of 
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Solution: 
F(s) has two simple poles (at 1,0 −== ss ) 
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Example 4.4 

Obtain the inverse Laplace transform of 
45

1)( 2 ++
=

ss
sF   

Solution: 
The first step is to factor 452 ++ ss =(s+4)(s+1)  which means that F(s) has two simple 
poles.  
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Example 4.5 

Obtain the inverse Laplace transform of 
)4(

1)( 2 +
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ss
sF   

Solution: 
F(s) has three simple poles ( iandis 22,0 −+= ).  
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Using Euler identity 
2

)cos(
tjtj eet

ωω

ω
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= , the expression of f(t) is simplified as 

)2cos(25.025.0125.0125.025.0)( 22 teetf titi −=−−= − . 
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4.2.2 Complex Poles Case 
When F(s) has distinct poles that are complex, the same technique discussed in the 
previous section can be applied. In this section we consider an alternative approach for 
distinct complex poles that are more convenient to compute.  
 
It is a fact that if the coefficients of a polynomial are real then the complex roots occur 
as pairs of complex conjugate roots. Keeping the factors that correspond to complex 
conjugate pairs as second order factor allows us to avoid using complex arithmetic and 
the resulted inverse transform is easy to obtain. The previous Example 5.4 is solved 
using the alternative approach. 
 

Example 4.6 

Obtain the inverse Laplace transform of 
)4(

1)( 2 +
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ss
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Solution: 
F(s) has three simple poles ( iandis 22,0 −+= ).  
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Matching the coefficients of equal powers of s  we have the following  equations 
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It may be convenient to use completing the square. This is an easy way to find the real 
and imaginary parts of the roots. A second order polynomial in the form  

02 =++ dcss  
Can be expressed as  
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The roots are ωja ±−  

Example 4.7 

Obtain the inverse Laplace transform of 
134
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+
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Solution: 
F(s) has complex conjugate poles. We apply completing the square to denominator 
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4.2.3 Repeated Poles Case 
In this section we consider the case when some of the poles occur at multiplicity more 
than one. The coefficients corresponding to simple poles will be obtained in the same 
way discussed earlier. If p  is a pole of F(s) with multiplicity m then the partial 
expansion of F(s) will contain terms like  
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The coefficients are obtained as follows 
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and so on. Note that the derivative is obtained before substituting the value s=p.  
 
 
 

Example 4.8 
 

Obtain the inverse Laplace transform of 2)1(
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Example 4.9 
 

Obtain the inverse Laplace transform of 3)2)(1(
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4.2.4 Inverse of  Non-Strictly Proper Functions  

So far we considered finding the inverse Laplace transform of rational functions that are 

strictly proper 
)(
)()(

sD
sNsF =  with degree of D(s)> degree of N(s). In this section we 

consider the case when degree of D(s) is the same as the degree of N(s). Two steps are 
done. First F(s) is expressed as the sum of a constant number and a strictly proper 
function. The inverse of a constant is the same constant multiplied by a Dirac impulse 
function and inverse of a strictly proper function is done as usual. 

 

Example 4.10 

Obtain the inverse Laplace transform of 
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The strictly proper part has two distinct poles and F(s) can be expressed as 
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Solved Problems 
 
Problem SP4.1 

Obtain the inverse Laplace transform of 2)3(
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Problem SP4.2 

Obtain the inverse Laplace transform of 
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Problem SP4.3 

Obtain the inverse Laplace transform of 
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Solution: 
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Summary 
In this chapter, the inverse Laplace transform was considered. Inverse Laplace 
transform is simply obtaining the time domain function f(t) that corresponds to the given 
frequency domain function F(s). Computing f(t) using the definition directly is not 
simple. An easier approach is to use partial fraction expansion in which the function is 
expressed as the sum of simple function for which the inverse Laplace transforms are 
known. Three special cases were considered: simple poles, repeated poles and complex 
poles. Inverse Laplace transform of proper functions that are not strictly proper was also 
considered.  

 
Simple poles Repeated poles multiplicity residue 
Partial fraction  Completing the 

square 
  

 
 
Review Questions 
 
 
Problems 
 
4.1 Find the inverse Laplace transform of the following functions 

a) 
16
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e) 
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4.2   Find the inverse Laplace transform of the following functions 
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4.3   Find the inverse Laplace transform of the following functions 

a) 
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4.4 The Laplace transform of a signal is given by 
ss

sX
+

= 22
1)( . Obtain the signal x(t). 

  
 


