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XICROPROCESSOR CONTROL OF HIGH PERFORMANCE TACTICAL NISSILES

Dr. M. Elshafei Ahmed Dr. Talal N. Bakri
Systems Engineering Department Electrical Engineering Department

King Fahd University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

ABSTRACT

The next generation of high performance tactical missiles
requires rapid, precise, and large angle rotational maneuvers.
The equations of motion representing large axis maneuvers are
coupled and nonlinear. This report addresses feasibility issues
of implementing & recent control technique of missiles autopilot
based on a member of intel 8096 family of bigh performance single
chip microcontrellers. A nonlinear adaptive technique 1is adopted
In this study in order to accommodate the uncertainty and nonlin-
earity in the missile dynamics, as well as the unknown environ-
mental disturbance torques. A block diagram of +the hardware and
2 detailed algorithm flow chart are presented. The described
system implements a full attitude reference system using a quat-
ernion parametrization. The quaternion is ﬁpdated by a recent
norm and orthogonality preserving algorithm. All the
computations were analysed to minimize the execution steps and
the memory requirements. The majority of equations were scaled
for fast and efficient implementation by fixed point arithmetic.
It is shown that the microcontroller is not fully wutilized, and
further functions as guidance and communications could be incor-
porated in the hardware board. The hardware and software frame—
work established 1in this study can be used for developing and

implementing other coutrol Blrategies as well.
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Figure 1. Rocket and reference coordinate system



I. INTRODUCTION

The last few years have witnessed a rapidly expanding horizon
of microcontroller-based applications with ever increasing task
complexity, mainly due to the availability of inexpensive high
performance single chip microcontreollers as Intel 96 series, 8051
series, 80186, NEC V25, and Texas Instruments TMS320 series. The
structure of such controllers integrates many of the hardware
components for real time control applications, and makes them
ideal for stand-alone dedicated tasks. In this study, we
selected Intel 8797, a member of the 8096 Microcontrollers [1) (
Trade mark named MS96 family). The microcontroller includes 232
byte register file, 8 k of EPROM/ROM, five 8-bit I1/0 ports, pulse
width modulated output, eight 10-bit analog channels, a full
duplex serial port, hardware and software timers, and 16-bit mul-
tiplications and divisions.

Missile flight control 1s =a complex task which has
traditionally been solved wusing technology based on analcocg and
digital circuits, electromechanical elements, and pneumatic ele-
ments (2,3,4,5]. The new generation of microcontrollers can pro-
vide a digital control solution with substantial miniaturization
of the hardware, and with software capability with a degree oOf
sophistication that would have been 1impossible to consider for

short-range tactical missiles.

Traditionally, the design of a missile control system (2-8)
proceeds by first defining the typical speed or Mack number,
altitude and other conditions at which the missile will operate.
Then, the varilous aerodynamic coefficients are linearized near
zero incidences. A linear model and a control system can then be
derived on the assumption that the missile will exercise small

perturbations about zero incidences. The calculations are

+
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repeated for as many combinations of incidences, missile parame-
ters , and operating conditions as judgement deems advisable.
However, the next generation of high performance tactical
nissiles requires rapid, precise, and large angle rotational
maneuvers. The equations of motion representing large axis
maneuvers are coupled and nonlinear. Recently several interest-
ing control techniques have been proposed [9,10,11] for bandling

such large angle reaorientation/slew maneuvers.

In particular, the nonlinear adaptive technigque proposed in
[9) is adopted in this study. The advantages of this control
scheme are the ability to handle the highly nonlinear dynamics of
the missile, and its ability to accommodate the uncertainty in
the missile parameters and unknown environmental disturbance
torques. The control technique enables the missile attitude 8
to assymtotically track a model reference output & , where

9'(91'92-93)T

are the missile Reoll, Pltch and Yaw, respectively, as shown 16
Fig. 1. The missile autopilot investigated in this study may be
described with the aid of Fig. Z. The missile attitude 1is deter-

mined from three gyros which provide signals properticnal to the

angular rate of rotation
T
w=(w,,w,;,w;)

around the body axis %, , y,, and z1 as shown in Fig. 1.

The attitude reference system then estimates +the missile
prientation € with respect to some 1nitial position wusing the
gyros output. In the mean time, the desired orientaion % ,
according to target tracking set points, are obtained from a
model reference.

The error vector Z between the desired orientation and the
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estimated crientation, @’is used to generate the control signals
which dé%lect the Elevator, Rudder, and Aileron control surfaces.
However, throughout the paper the estimated orientation will ©be
taken simply as the true orientation. Accordingly, the error

vector will be defined by
0-8.0-8)
The control law used 1in this study is wnonlinear, and 1its

parameters are continuously estimated and updated from a dynamic

system block, as depicted 1in Fig. 2.

In section II, we present a brief introduction to the misslile
dynamics, 1its aerodynamic derivatives, and the attitude reference
parameterization. In section 111 we review some of the tech-
niques for autopilot design and present the nonlinear adaptive
control method to be implemented in this study. section v
describes in detail the implemented control algorithm. Finally,
in section V, we discuss the hardware configuration, the overall
algorithm, and estimate the computation time and the microcon-

troller utilization.
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11. PRELININARIES

11.1 Missile Dynamic

In order to study the response or impose control actilons on
tactical missiles the appropriate Euler's equations of motion are
needed. The general motion of a rigid missile bas six degrees of
freedomn; three force equations and three moment equations. L.et
X, y, z be the reference axis in space with its origin at the
center of gravity of the missile, and x,, yy, 2Z: be the body
fixed axis of the missile, as shown in Fig. 1. Let £,, f=, fa be
the forces acting on the missile, and 1,, l-, 1= be the sum of
aerodynamic and disturbance torques. Let v,, vz, v= be the
velocity components along the X,, Y1, 21 fixed body axis, and let
(w,,w,,w,;) be the angular velocities of the missile around the
fixed body axis. £, is the sum of the propulsive and drag, while
f- and f= include the aerodynamic normal and 1ift forces as well
as other disturbances of unpredictable nature and depend on the
incidence angle, eair density, altitude, and Mack number. v,, the
missile velocity along the x,-axis, 1s a large positive gquantity
U, changing at most only a few percent per second. The compo-
nents of velocity along the pitch and yaw axis, however, tend to
be much smaller quantities which can be positive or negative and
can bave much larger rates of change. The direction of the veloc-
ity vector with respect to the missile axis is described with
the aid of two angles; the angle of attack

a arctan(ua)
U

Us

N e
u
and the side slip angle

va

p= arctan(%z) ~ U




The matrix form of the dynamical equations o©f the missile are

given by {13}:

myu+mwv= f (2.1.1)
lw+wlw=L (2.1.2)
where m is the missile mass, with f = £y, f2 . £fa 07 L =
(1,, 1z, 1z >7, W= (W, Wy w,)" R and v = (v, V., Vvz)T.

The square matrix @& is formed from the vector as follows:

E

0 —w,; Wy,
W= w, 0 -w, (2.1.3)
-—Ww, W, 0

and 1c¢R™ is the inertia matrix given by
I:: _!xy —]Kl
Iy =1y (2.1.4)

o -Izy Izz_

Normally, the X-Z plane is a plane of symmetry, hence Ixy =

lyx = lyz = lzy = @ . However, Ixz = Izx may not be zero.

Vhen the X-Z is a plane of symmetry, the force and moment equa-

tions break down to the following equations (4,D5)

m{v,+ WU, ~Ww,u,)=X-mgsin(6,)+ f, (2.1.5)
m(d,+w, v, -w,v)=Y+mgcos(0;)sin(6,)+ f, (2.1.6)
m(v;~w,u,;+w,v,)=Z+mgcos(6;)cos(0,)+ f, (2.1.7)
I, =, =1 )Ww,w,=1 (W w,+w )=L+L, (2.1.8)

Iy o= (1= I )waw + L (wi-wi) =M+ L, (2.1.9)

I,,,u')a-(l,,-I,,)w,w2+1,,(w,w3-d),)-N+L,, (2.1.10)




vhere X,Y, and Z are the mserodynamic forces; L, M, and N are the

are the aerodynamic moments, and

fx‘—f)"f‘t’l‘x»l-yvand[x

are disturbances

11.2 Control Surfaces:

Let the deflection 0of the control surfaces of a typical tail-

controlled missile be denoted by
€1,82. 85, 8nd g,

The deflections are positive if clockwise looking outwards along
the individual bhinge axis. For the crucified missile shown in
Fig. 3, the contrel surfaces deflection angles are defined below.

Alleron deflection
1
a = 5(E+Ea)
Elevator deflection
1
ap'é(E:"E:s)
Rudder deflection
1
a, = 5(5,- )
Here we shall assume that Ez and 54

act differentially, hence

ay‘EZ-—Eﬂ



Aileron deflection produces moments about the X, axis, and
hence, changes the missile roll. Positive elevator deflection
produces negative force in the z, direction and anticlock wise
moment about the y, axis (pitch). Positive Rudder deflection pro-
duces a positive force in the ¥y direction and negative moment

about the z, axis, causing changes in the missile yaw.

1e



o

Fig.3, The control surfaces as
seen from the rear of the
missile.
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11.3 Missile Aerodynamic Derivatives i

_—

The resulting aerodynamic moments and forces are complex
function of the control surface deflections, the incidence, Mack
npumber, altitude, and alr pressure (2,3,4,5,8]. The aerodynamic
forces and moments are usually represented using dimensionless
coefficlents. The coefficlent system provides a convenient
method for deriving the over all aerodynmamic characteristics
from the characteristics of the individual components of the mis-—
sile ( fuselage, wings talls, control surfaces, canards etc ).
The aerodynamic coeffients are independent of the size of the
missile for a given configuration and hence are the standard
means for converting data obtained from wind tunnels models to
full scale characteristics.

The aerodynamic coefficients are defined by the following

general relations:

Force F-C%P.uzs-c,qs (2.3.1)
Moment m=C,XPM2Sdd~C,qSd (2.3.2)

Vhere M: is the Mack number, P is the ambient pressure, S 1is a
reference area

( usually the nmissile cross section, y-1.4 15 the ratio of epe-
cific heats , and d 1is a reference length ( usually the missile
diameter). The ambilent pressure 1s function of altitude and
temperature [3]. A table of standard pressure vs altitude can be

found in (8].
The normal (pitch> force , side force, axial force, pitching

moment, yawing moments, and rolling moment dimensionless coeffi-

clents are then defined as feollows

Normal ¢ pitch plane>

iz




C,= EE
Side Force
c- 2
Axial Force
Cx= 25
Roll moment
L
L gsd
Pitch moment
C“-qjsd
Yaw Moment
C”-qu

It 1is often convenient to exporess the pitching and Yawing

moments in terms of the normal and side forces as

M= %PMZSdCZ

N-%PMZSdC,,

13




The aerodynamic coefficients are functions of alpha, beta , their

derivatives, the body angular velocities, and the control surface

deflections and theilr derivatives. The aerodynamic coeffients are

usually approaximated by +the multivariable Taylor polynonial

series expansion assuning small incidence angles and small con-

trol surface angles.

The general expression for any €. , where

X, ¥, X, L, M, and N is

lambda stands for

d . d
C, =Ch o+ Cra+C, . +CapB +C pzﬁ 5—Cha Z_L}Cxpa"'

2U

d d d

ﬁcxw,wl + éﬂcxw,wz‘* 2_UCAw,w3+ Cag, 81+ Chp, 82+ Gy 85+
d d

ZUCKt El. C’-t §2 ZUCXE EB

The coefficlents of the above expansions are called the aerody-

namic derivatives and can be found from wind tunnel and flight

tests [2,22), emperical formulas [24], or computer simulation and

analysis techniques.

treated in a subsequent report.

11.4 Missile Attitude System:

The relation between the rate of change
angles (8,,9,,9,) and the angular velocities

stated by the following equation (7,13),
W= (W, W, w;) ~R(6)8
and
cos8,cos8, sinb, O
R(8)=| —cos0,sin6; cosb,; O
sin@, 0 1

14

Missile modeling and simulation will be

of the attitude

(W, Wy, wy) can be

(2.4.1)

(2.4.2)




Equation (2.4.1> 1s a key relation for determining the attitude
of the missile since 1t relates the rate of change of the orien-
tation of the missile 6 to the gyroscopes output
E{'(UJU(“Z'“H)T

The problem of computing Missile attitude conprises two
closely related parts. These are the establishment of the orien-
tation of the body coordinate system with respect to a reference
coordinate system, and the transformation of vectors from one
coordinate system to another. Different Techniques are available
for solving the problem, for example: Euler angles, vector repre-
sentation, Euler parameters <(quaternions), Caley-Klein parame-
ters, direction cosines, and Tensor representation. In this
paper Euler parameters which are known as the Quaternions are
adopted for the determination of +the missile attitude 1[13,14].
Quaternicne are wusefull to simplify the notation required for
equations invoiving general body relations. In this section, Ve
revelw briefly the gquaternion parameterization method for atti-
tude determination, and apply Pade' approximation method (12}
to obtain a recursive set o©f equations for updating the
quaternions and the missile attitude using the gyros measure-
ments.

The Euler parameters q, , are the components of a quaternion

q defined by:
q=q,i*q.j+qsk+q, (2.4.3)

Quaternions are an extension of complex numbers. The unit vectors

i, J, k satisfy the relations

i’= j?=k?=-]

ij=-ji=k (2.4.4)

15



jk=—kj=1i
ki=-ik=j
The orientation of the missile with respect to its 1initial

orientation may be found by integrating a quaternion differential

equation [12].

.1 1 . . . .
GmLqw= (g ig)* a2 Kqa)(iw, + jwyt ko) (2:4.5)

2
In terms of vector notation, equation (2.4.5) can be rewrit-
ten as '
q, 0 w; —w, w,q
. g 1] ~Wy 0 w; Wyl g,
g=| .~ |=5 (2.4.6)
d; 2 —w, —w, 0 w; ||
q-4 -w, -wz -w3 0 Q4
A space vector may be expressed as a quaternion with q, = 0.

1f g represents the orientation of the fixed body axis with
respect to reference axis, then the space vector is transformed
from body Xe to reference axis Xm via the following transforma-

tion:
-1
Xg=q%Q . (2.4.7)
Now, and i1f the norm ef g 4., 1is given by
4 1/72
2
q,-(Zq,) =1 (2.4.8)
=1
then g is normalized and g~' is given by its conjugate as

g’ =(Q.+ig, * jq,+kqs) =(q,-iq,~ jq.~kqs) (2.4.9)

16



which 1mplies that Xee 18 S'iven by

-

Xp=QX,q (2.4.10)

Equation (2.4.10) 1s equivalent to the ordinary transformation by

the direction cosine matrix C; Namely:
x,=Cx, (24.11)

Using the above relations, namely (2.4.1@) and <(2.4.11>, ‘the
cosine matrix may then be represented in terms of the Euler

parameters as

Qi-q:-93+q% 2(¢1Q.-Q:@4)  2(q:q.+Q:2Q4)

C-| 2(q192+939¢) -q1+93-93+q% 2(3293-9:94) (2.4.12)
2(9:9,-9:9,) 2(Q:9:*q:q,4) -gi-9i+qi+q;

The cosine matrix is an orthogonal matrix that is traditionally

used to compute the orientation of the missile by integrating the
matrix differential equation [7]

= C ® (2.4.13)

It is possible to compute the pitch, yAw} and roll angles
(6,,0,.0,) in terms of the quaternion parameters from the elements
of the cosine matrix C as follows [13,14]: Define the parameter

C. as below

C,=C3+C%=(q2+q2+q3+q¢3)-849,q.94q,
=1-849,9.9.9, (2.4.14)

then

17




L {-C
6, = tan ’(——if) (2.4.15)

c
fcC
6, = tan ‘(Jéi) | (2.4.16)

-1 -Clz
0, =tan (2.4.17)
Cu
where
-180°<0,<180°
-90°<0,£90°
-180°$9,<180°
In high performance missiles and aircrafts, large angles

maneuvers are obtained by coordination of the three angles. For
example to obtain high yaw turn, the missile is allowed first to
bank ( roll) a certain angle, then the elevator and rudder
deflections are coordinated to achieve the desired turn. Simi-
larly, to perform vertical flight or vertical turns while avoid-
ing the singularity at pitch angle = 90 degrees, the missile
banks first by certain angle , then the vertical flight 1s
achieved by coordinating the orientation between Yaw rotation and
Pitch rotation (less than 90 degrees). One Qay to achieve such
coordinaticn is through the wuse of a coordination transform

matrix CTH f such that

ei el
~
0, =T 0, (2.4.18)
3 lcoordinatad 93 desired

la




It can easily be shown that the parameters q, to gq. and Ci,
are self normalized, 1.e. having an absolute value bounded by
one. ] may then be evaluated using a truncated Taylor series

expansion of arctan as follows:

n o1 1 1 1

———+ - + o (x>

2 x 3x* Sx® 7x7 ( )
. x? x5 x7 .
tan x= x-?+€-?+ ..... (-1€£x<1) (2.4.19)

n o1 1 1 1
+ - +
2 x 3x3 s5x% 7x7

Moreover, for fixed-point implementation, it 1s always possible

+..0 (=1>x)

to use the middle expansion by proper normalization of the argu-

ment. This can be shown as follows

To evaluate

)

a1

¢p=arctan(¥,X)= arctan(

1- find
o.=arctan(|Y].[xD) if|Y|<]X]|

Y

X X

In the above step the middle expansion and fixed-point aritmetic

-1, +1) ifly|21Xxl]

n
b= Z+ arctan(

can be used directly.

2- correct for the proper angle quarter

ifX20,Y20 ¢=6,
ifX20,Y<0 ¢=-b,
IfX<0. Y20 b=—¢,+n

19




ifX<0,Y<0 ¢=po—n

To solve the quaternion differential equation <(2.4.5) numer-
ically, G. Hyslop [12] propesed a numerical method that preserve
the normality of the gquaternions and solves the differential
equation in a recursive fashion. Let T be th& sampling period of

the angular velocities measurement, and assume that the angular

veloccities are constant between samples, then the incremental
rotations aAé, are glven by
[
Ad,=| wdl ~ w,T: i=1,2.3,...
-7

and define A4, to be

1/2
B, =(D6T+063+003) (2.4.20)
Then an approximate sclution to (2.4.5) may be given by

aAd
2

q(t)=g{t-T)e (2.4.21)

Using first order Pade' approximation [12], the vector form solu-

tion of g{(t), which is also normal, is given'by

16-Ad2 8 "
- - 2.4.22
g(t) {16+A¢3 I+16+A¢3 A@}g(t T) ( )
with 0 Ad, =-—Aé, A
Ad o -Ad, 0 A, A, (2.4.23)

A¢2 -A¢| o A¢3
-Ad, -0, -0d, 0

29
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and,

2 2 2,172
A, =T(Wwi+wi+w3)

let us define d,, d.., da as follows:

Ad,” 1-d, T
dl: s - s du—-—-—-— 2.4’
Y16 2 1+d, P2(1+d)) ( 24)
Since the sampling period satisfiles n>Tw, , then 1t can be shown

that d,, dz and dz are alsc normalized for fixed point computa-
tion.
A further manipulation of equation (2.4.22) ylelds the follwing

recursive form
q(t)y=d,q(t~T)+d, (1) q(T-t) (2.4.25)

where i 1is defined as A¢ in (2.4.23). If t = kT, the 1last
equation breaks down to the following normalized set of recursive

equations;

Q. (kT)=d,q,[(k-1)T]+d,[q,[(k-1)T]A¢,(kT)-g,[(k-1)T]A$,(kT)
+qo[(k- 1)T]A$,(kT)] (2.4.26)
Q(KT) = d,q,[(k= 1)T1+ dy[q;[(k~ 1)T]AS, (KT)+ @, [(k - 1)T186,(kT)
—q,[(k-1)T1A¢,(kTY] - . (2.3.27)
Qa(kT)=d,q5[(k=1)T )+ d3[g,[(k-1)TIA$,(KT)+q,[(k~ 1)T1A$,(KT)
=qQ.{k-1)T]A$,(kT)] (2.21.28)
Qu(kT) = d,q[(k=1)T ]+ ds[q,[(k~1)TIA¢ (KT)+ q [ (k- 1)T]A¢,(kT)

~q3[(k-1)T]A¢,(kT)] (24.29)
Finally, the attitude of the missile ¢(4kT) can be obtained from
(2.4.15 - 2.4.17) using the updated Euler parameters.

21




111. THE ADAPTIVE CONTROL LAV AND IMPLEMERTATIOFN :

The classical approach for missile attitude control
{3,4,5,6,7,24) depends on reducing the coupling between roll,
pitch and yaw, and hence each one can be controlled indepen-
dently. The first step in this approach is to design the missile
such that Ixz = © to eleminate the nonlinear coupling associted
with Ixz in the egquations (2.1.5 - 2.1.1@). The second step is to
stablize the roll, i.e. forcing w, = @, hence the dynamics of
the pitch and yaw will be almost decoupled. Finally the transfer

functions are derived wusing the approximations

CN-C~,a+CN,pa,,

Cu- CuﬂB*‘Cuu,Qy

The classical feedback control theory is used tc shape loop
transmission, where the missile aerodynamic derivatives and per-—
formance specifications are transformed inte scheduled control
templates according the flight conditions ( Mack number, and
altitude).

However, the demand for high maneuverability, e.g. high per-
formance bank to turn, induces inertia and kinematic cross cou-
pling effects among the pitch, roll, and yaw channels {2,22).
The coupling becomes more severe with increasing missile roll
rate, and even more severe in the case of asymmetrical airframes.
Several multivariable control techniques were reported in the
published literatures (9,10,11,18,19,21,23].

(Lobbia and Tso, 18] applied the Linear Quadratic Regulator
LQR technigue for control a cruise mnissile taking the coupling
between the Yaw and Roll channels, neglecting the pitch channel
coupling, and assuming steady flight conditions. In order to

22
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achieve high robustness in the presence of uncertainity, the
design was based on the worst case condition which lead to poor

response time.

[ Lin & Lee , 19] Applied the generalized Singular Linear Qua-
dratic GSLQ control for coordinating the pitch , yaw and roll
commands. The method allows to synthesize state FB gailn matrix
based on minimizing a gquadratic cost function that does not con-
tain explicit penality on control. The exact control law
requires solution of Riccati matrix differential equation and a
vector differential equation. To make the soclution tractable, a
suboptimal solution was investigated based on the sclution of
stationary Riccati equation. The control 1law is simplified to

the form

u=K Ax+u,
where

U;=Ky(B;=x,+Ax,)

Ax=x-x,; x,x,eR®"!

are the state vector and the desired state vector respectively.

KK, are gain matrices cbtained by solving the Matrix Riccati
Equation. 8, is a vector that accounts for " estimated nonlinear-
ity, uncertainity and disturbances. The gain matrices and the
systemn matrices are computed and stored in templates
corresponding to variocus flying conditions as Mack number and
altitude. A gain scheduling strategy is required for template
selections. The basic computations of the simpli&ied control law
break down to about 148 (MDO) and 132 (ASO?, conpared to about
114 (MDO)> and 107 (ASQO> for the computation of our control law.

Although Iin & Lee approach demonstrated a dramatic improvement

23




in performance over techniques based on uncoupled control chan-
nels. However, the method is still based on linearization of the
aerodynamic forces and moment and requires tabulation of the
missile dynamic models parameters for the various anticipated
flight conditions. The control law is computed for each one of
these conditions and stored in the on board computer along with

the model templates.

[Dwyer, 11} developed an exact nonliear control law using a
novel approach where a nonlinear transformation of variables was
derived to reduce the problen of rigid body rotaticonal maneovers
to an equivalent linear control problem. The method has great
potential in the control of spacecrafts and robotics where the
body parameters are known and the nonliear aerodynamic transfer
functions are not considered. Further investigation is still
needed to apply this technique to missile autopilot.

{Ridgely et al, 21] consdidered the application of multivari-
able Linear Quadratic Gaussian LQG control with Loop Transfer
Recovery. In this method , the formulation proceeds as regular
LQG , however with free parameters 1in the cost function. These
free parameters are then used to retune tbe frequency response
characteristics based on the singular values of the filter loop
transfer matrix. The method requires a great.deal of iterations
and simulations since not all the classical frequency domain

design is extendable to MIMO,

Application of the conventional adaptive control methods has
not been reported in +the published literatures for the attitude
control of missiles. The reason is probably due to +the fact that
the conventicnal adaptive control theory is based mainly on lin-
ear system models with fixed but unknown parameters or with

slowly varying parameters. Convergence and stability of such
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algorithms in the presence of Strong nonlinear dynamics has not
been investigated yet. However, more recently a multivariable
adaptive control scheme was investigated by JPL for the control

of a large space structure [16].

In the next section we briefly present the adaptive control
scheme proposed 1in [9], and introduce a few manipulaticns in
order to break down the computations into efficient procedures

for microcontroller implementation.

111.1 The Nonlinear Adaptive Control Law:

The control system comprises a model reference which accepts
attitude set points, r,(t), r(t), ra(t), from a target tracking
systemn. The model reference produces reference angles
Qh(h.éuéﬂ' representing the desired roll, pitch and yaw respec-
tively. The model reference produces as well é v & desired rate
of change of the missile attitude. The reference @,é are
then compared with (8.8) the estimated value of the actual
attitude of the missile. The error Z 1is then used to derive a
nonlinear control law in which parameters are continuously esti-

mated and updated using a dynamic system.

The nonlinear control law can be described by the following

set of equations {9): recalling the tracking error
Z(t)=(e(t).e()) (3.1.1)
and assuming that the dynamics of the model reference 1is given

by

d? d .
FO‘(I) =-k;9,(t)- C;Eég(t)+ k;r:(t) . i=1,2,3  (3.1.2)
where k,>0 ) >0
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let us define the following matrices

K ~diag(k,, ks, k3) , C-diag(&,, &y, &) (3.1.3)

0 I
A, = 3.1.4
m {-K _le ( )
The resulting A, defined above is a stability matrix. XNow let us

define a matrix Q as

Q0
Q==[ (3.1.9)
¢ Q
with Q,, and Qs positive diagonals, Then, the solution, P, of

the following Lyaponov egquation
PA,+AlP+Q=0 (3.1.6)

is positive definite, and its partition is given by:

P P
P-[ 1 m]
Py Pg

1

then PZ]-EK-lQI (3.1-7)
) P -1

and Pzz"éc (Q+K Q) (3.1.8)

The elements of P., and P,. are precalculated and stored perma-

nently in the computer since they will be utilized in computing

the control law.

The orientation control vector u(t) is obtained from the fol-

lowing relations [91;
u(t)=R7(8) u(t) (3.1.9)

where
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v(t)=] [ (e.¢.8)S(Z.B) (3.1.10)

[Tee.e.8)=8,lel,+B,1¢],+8,1¢]2+8, (3.1.11)
S(Z'B’t)=sm[z]—[(g,g,ﬁg(1’.zg+Pzzg‘)] (3.1.12)
S

x if |xisl
Sat(x)= % iF Ix[>1 (3.1.13)

The parameters f{;'s are some dynamic parametrs to be estimated

through 2 dynamic system as shown below.

111.2 Parameters Bstimation :

Following (9], the parameters B; 's are estimated using a

dynamic estimator of the form

d d .
a‘zsn'nnlglzla(g)]z ) aBz'nzzlglqu(g)lz
d . d
EBS'“JJlgI:|a(Z)l2 ' 554-'144'“(;)'2
d S
giPs = ~nsslel, (3.2.1)

where

a(Z)=2(P, e+ Pye)

n,>0 ,B,(0)e(0,») ,Vi=1,2,...,5.
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ITI.3 The Control Surfaces and The Gontrol Signals :

The orientation control command T
u -(ar,(xp.a,)_

is related to the vector v(t) by equation <(3.1.9), and related

to the control surfaces commands by the relation

£ 1 1 0
E=| 8 |={0 O I|u (3.3.1)
£, 1 -1 0

The orientation matrix R'(¢) 1s obtained in terms of the quat-
ernion g+, g9z, 9=, Qa4 and combined with relation (3.3.1) to get

Uu,=T,v, (3.3.2)

vy=C 50, (3.3.3)

E =T u,+T,u,-T v, (3.3.4)

£2= Vs (3.3.5)

£,=T,0,-T,v,-T, v, (3.3.6)

where

Cn+Cy;

3.7

T, C. (3 )
Cn'clz

-— 12 3.8

Ti= =5 (3.3.8)

T,=4C. (3.3.9)
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111.4 Implementation of The Nonlinear Adaptive Control:

The nonlinear adaptive control 1s actuated through the mnea-
surement of the error in the attitude of the missile. In order to
generate the input command, the differential equation of the
model reference and the various functions involved in the control
have to be calculated using the microprocessor. The calculation
procedure requires the equations to be put in the form of dis-
crete recursive equations that can be conputed every sampling

interval.

The equations of the model reference are given by (3.1.2).
Suppose that the system signals are sanmpled every T seconds for
some small value of T. If the derivatives are approximated by a
first order backward difference, Equation (3.1.2) can Dbe written

in the form
B,(kT)=(1-Tc),[(k-1)T]-Tk6,[(k-1)T]1+Tk,r [(k-1)TI3.4.2)
8,[kT1=TH,(kT1+8,[(k-1)T) i=1,2,3 (3.4.3)

Using ¢(3.4.3) and equations (2.3.12 - 2.3.14), the errors and its

derivatives can be computed as

e, [kT]}=6;,[kT)}-8,[kT) i=1,2,3 (3.4.4)
e‘,[kT]=é,~[kT]—é;[kT] i=1,2,3 (3.4.5)

VYhere §,'s are determine using ¢(2.1.5) and the gyroscpes measure-

ments w, 's as follws,

0,[KT 1= (C, [KT100\[KT ]+ C o [KT I KT Dy (34.6)

éz[m-(clz[krlwitkwcl.[krlwz[kT])T—C;Tﬂ (3.4.7)
0
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O5[kT]= wy[kT]-C 4[kT)8,[kT] (3.4.8)

Using (3.4.4) and <3.4.5) the norn of the error and 1its rate can

be computed as

le(kT]| = (e}[kT 1+ e2[kT]+ 2 [kT]) (3.4.9)

[6[kT )| = (63[kT ]+ 62[kT)+ 62[kT})’ (3.4.9)

The function a(z) of equation ¢(3.2.1)> can be evaluated as

@, [kT]=2(Py(1,1)e,[kT])+ P,y(1,1)6,[kT]) (3.4.12)
0 kT )= 2(P3(2.2)e,[kT1+ P,,(2,2)6,[kT]) (3.4.13)
ay[kT )= 2(P;,(3,3)es[kT )+ Py (3,3)é,[kT]) (3.4.14)

and the norm of a(Z) can be computed as

lalkT ]l = (2} [KT ]+ aZ[kT ]+ al[kT])’ (3.4.15)

The computation of the parameters B, of (3.2.1 - 3.2.2) can be

performed in the same fashion as follows:

B,[kT]-T"n,,‘Ie[kT]IJ‘l\a[kT]ﬂ;B,t(lé-l)T] (3.4.16)
B.[kT]= T‘nzz‘lé[kT]L‘l\G[kT]H; B.[(k-1)T] (3.4.17)
BalkT1=T*ny*[6[KTI2*|alkT ]+ B,(k- 1)T]  (3.4.18)
BkT1=T*n,* a[kT] +B,[(k-1)T] (3.4.19)
BslkT])=T*ngs*le[kT ]|+ B [(k-1)T] (3.4.20)
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Once these parameters are available the control law can

readily be computed in the following manner

[ TtkT)= 8, (kT1le(kT1l+ B, (kT 1|e]+ Bale[kTII*+B,[kT) (3.4.21)

[ Tirr]

kT]= ——x 3.4.21) -~

[Tk BT ( )
n;[xT]=ﬂ[kT1a;[kT] i=1,2,3 (3.4.23) 1
IM(kTY = (M2(kT]~ A3[kT ]+ N3(kT Y 3.4.24) ‘
\ﬂ;[kT] <1 ‘
.
S[kT] N7 (3.4.25) |
BT T |

Then
vi[kT)=~-T [[kT1S;[kT] i=1,2,3 (3.4.26)

¥ow 1t is the matter of programming all these equations on the

microprocessor program memory.

IV. SCOFTVARE DESCRIPTION :

The following algorithm is a step by step procedure suitable

for direct implementation on microprocessors. The steps are as

follows :

Step @ : Set the following model parameters and initial condi-

QI(O)-Qz(o)»Q3(o)3ﬁl(o)'ﬂz(o)vBa(o)’a4(o)sss(o)3
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91(0),92(0),93(0);9,(0),92(0),03(0);9|(0).92(0),63(0);
9‘(0).92(0).Ga(OJ;UJl(O).UOZ(O),0)3(0);r,(0).r2(0).r3(0).

All initial conditions are selected offline and stored in the
microprocessor memory. The initial value of the controller
parameters can be found by simulation using the 1initially known

missile model.

¥ow for every sampling interval do the following :

Step 1 : Solve the quaternion dynamics and compute the following

q.1(kT),q.(kT),qa(kT), andq.(kT)

from equations (2.3.22 - 2.3.25) respectively.

This step requires 22 addition and subtractions operations (ASO),
and 30 multiplication and division operations (MDO».

Step 2 : Solve the dynamics equations of the reference model and
compute the following ;

8:(KT) i-1,2,3

using equation (3.4.2).

8(KT) i=1,2,3

using equation (3.4.3).
This step requires 12 ASO and 12 MDO operations.
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Step 3 : Solve for (§,8) as follows
8,(kT)

using equaticon (3.4.6)

6,(kT)

using equation (3.4.7;

8,(kT)

using equation (3.4.8)>

8,(kT)

using equations (2.3.12) and (2.3.15)

8.(kT)

using equation (2.3.13 and 2.3.15)

05(kT)

using equation (2.3.14 and 2.3.15)

This step requires 19 (ASO> and 12 (MDO> plus three arctan opera-

tions.

Step 4 : Compute the error 1in the missile attitude and the

parameter a(Z) ;

é‘(KT) i=1,2,3

using equation (3.4.5).
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e (kT) i=1,2,3

using equation (3.4.4).

[elkT]]

using equation (3.4.10).

lelkT]]

using equation (3.4.9).

a,[kT1,a,[kT],a,(kT ), and a[kT]

using equations(3.4.12 - 3.4,15) respectively.

This step requires 28 (ADS) and 27 (MDD plus 3 square root oper-

ations.

Step 5 : Solve the dynanmices of the controller parameters in the
following way:

B,[kT]

i using equation (3.4.16)

JE——

B.[kT)

using equation (3.4.17)

Bs(kT]

i using equation (3.4.18)
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P g e

B.LkT]

using eqguation <(3.4.10)

Bs[kT]

using equation <(3.4.20)

This step requires 5 (ASO) and 13 (MDO).

Step 6 Control law computation.
parameters :

[ Ttrr3

using equation (2.4.22)

f,[kT] i=1,2,3

using equation (3.4.23)

fi[kT]

using equation (2.4.24)

Step 7 : IF
ﬂ[kT] >1

GO To Step 9

Find first the

following




Step g . Compute S<(kT) as

S,(kTy=11, i=1,2,3

Go To Step 10.

Step 9 Compute S(kT) as
[kT]
‘1)

Steps 6 - ¢ require 6 (AS0) and 16 (MDO) Plus one square root

S(kT)=1i i=1,2,3

operation and one logical decision.

Step 0 : Compute the control variables as follows:
v,[kT] i=]1,2,3

using equation (3.4.26)

T,kT] i=1,2,3

using equations (3.3.7-3.3.9)

Finally compute the control surfaces deflections as:
§.[kT) i=1,2,3

using equation (3.3.4-3.3.6)
This step requires 6 (ASD) and 11 (MDO) Plus one square root.
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Step 11 : Vait for the next sample and go to step 1.

A major difficulty in programming embedded controllers as the
8797 1s that for efficient utilization cf the scarce on chip data
memory, and for high speed execution it is necessary to progranm
the algorithm using assembly language. However, a conceptual C
program 1s given in Appendix A which demonstrates how scaling of
variables is used [13]) fo allow a great deal of computations to
be performed using 16-bit fixed point arithmetic,
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V. KICROPROCESSOR AND HARDVARE IMPLEMENTATION :

Y.l The Microprocessor :

The Intel 8797, a member of MCSS6 family, is a 16-bit micro~
controller with dedicated real-time [/0 subsystem and a set of 16
bit arithmetic instructions. The MCS96 family has been designed
for high speed, high performance real-time control applications.

The MSS6 =series has several unique features that lend this
series the best for such applications; e.g. the availability of
the A/D conversion channels on cbip, the programmable High Speed
Output HSO wunit for handling multi teal-time events, and the
integration of program and data memory On chip. Unfortunately,
such series of microcontroller lacks internal support of floating
peint operations, and there is no compatible Math Coprocessor
chips for this series. Hence, mathematical computations have to
performed using fixed point arithmetic with extra care to scale
variables, or to execute floating point operations unefficiently
by software. Recently, 1988-1989, a fourth generation of 32 bit

microcontrollers and Digital Signal Processors DSP became commer-
cially available; e.g. Texas Instrument TMS 320C30, Intel 8096Q,
AT & T DSP-32.

All were provided with internal Floating Polnt Math coprocessors
for unpreceded number crunching capability. However, the computa-
tional capability was enhanced at the expenseqthe real~time hard-
ware features. For example the HSD was removed from the new Intel
80960. On the other hand, the BQO6Q is at least 10 times faster
than the MSB86 series in floating point computations, 1t takes
about one microsec to perform floating point multiplications and
about 14.5 microsecond to obtain arctan. Similarly, TMS 320C30 1is
capable of executing 33 Million Floating Point Instructions Per
second, that is almost 10¢ times faster <than the intel MS96

38




microcontrollers. 1f size/power consumption is not critical, a
popular low cost alternative for enhanced floating point number
crunching is the use of B801B6/8087 microprocessors. However, a
board having the same functions as those on the XS96 chip would
require 3 -10 times power/size the MS96 based board.

There are two main sections of the 8787, the CPU section and
the 170 section. Each of these sections consists of a number of
functional blocks as shown in Fig. 4. The 8797 has, in addition,
an 8 K bytes EPROM on the chip.

The CPU uses a 16-bit ALU which cperates on a register file
(256 bytes) instead of a single accumulator. The low 24 bytes of
the register file are special function reglisters SFRs. The
remaining 232 bytes are general purpose RAM. The serial port has
several programmable modes and may be used in conjunction with an
appropriate radio transceiver for remote commands. The A/D con-
verter has 8 multiplexed analog channels and 10-bit resolution.
D/4 conversion in the form of PWN signals can be generated in a
programmable High Speed Output unit HSO. The HSO contains two
timers, 4 software timers, and others functions not used in this
application.

The following is a summary of the main relevant features:

EPROX size 8K bytes
Data bus © 16-bit
A/D resoclution ie-bit
A/D coaversion 22 u sec.
On chip user mem. 232 bytes
Clock 12 MHz
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Analog output PVX
Anzlog inputs & channels

Timers 2 timers, 16 bits each.

The HSO wunit, shown in Fig. 5, i1ncludes an eight register
Content Addressable Memory CAM for storing real-time pending
actions.

Each of the CAM registers is 23 bits; 16 bits of them specify
the time at which the action to be carried out, and the remaining
7 bits specify the nature of action and whether timer 1 or timer

2 1s used as a reference.

The embodiment hardware is ©basically the single chip micro-
controller shown in Fig. 6, where the program resides entirely in
the internal EFROM. The attitude set point commands are received

from a guldance system via the chip I/0 ports number 3 and 4.

Pins P1l.9 and Pl.1 of portl are used for selection of
attitude set points rl to r3, while pins P1.2 and P1.3 are used
for handshaking with the guidance unit as shown in Figure 6. The
servomechanisms of the control surfaces are driven by PVM signals
cn 3 pins of the high speed output unit, HS0.Q to HS@.2. The PWM

signals are generated by 3 software timers. . The PVWN rate |is
fixed at 400 Hz, and the direction of rotation is determined by
separate output lines, P1.5, P1.6, and Pl.7 respectively. The

PVX conversion range 1s about 11 bits. A fourth software timer
of the HS0 unit is used to generate 5@ Hz. time-base interrupts.
The analog input from the gyros corresponding +to the angular
rates wl, w2, and w3 are directed to the analog channels ACHO to
ACH3, and samp}ed at 50 sps.

40




POWER FREOUENCY

WREF ANGND oowN REFTRONCT

[
- - - - (R X X N F Y REYTSE X & 2 K K X J L X 2 X X X N J L X R K N R & R K N N N 2 ¥
L] L]
: & OYTL .
' cLocK ON-CHIP M
' Gik EPROWU B79XPM | ¢

z ' A/D s, [}

£ i | conveame L $... t | '

o ' 4 N K- T S '

v y 5 232 H ] NOORY t:)m'”'m
s 'L e reostea | ¢ "1 CONTROLLER ‘ SIGRALS
‘! WATCHDOG|r | RECISTER O Y AL LG '

! nuir | Lt H IITH ! PORT 3
: L 4 p 18, | 4 ADDR
] N 4 / DATA
1 <> + [ ] Bus
L] L 4
M PULSE BAUD
' won} 15t le— e s PORT 4
[ WOO. CEN, HIGH '
: SPLLD :
P4 /0 '
1 ]
‘ P2 MULTIPLEXCR '
[]
' '
LY X ¥ 3 - LA K B X KN N N J L2 R N X ¥ K N X N N [ E X X B N N F N )
T3 )
PORT 0 PORT 1 PORT 2 HS! MSO
ALY FUNCTIONS
Figure 4. MCS®-96 Block Diagram
. ! -
) - "worr
) - TICLK—>]  EvENT
14 58 GLOCK TSR 1 TIRST—ad COUNTEN
oo (I
"I X
l ¢
..—...—!—ﬂ—-‘- oUTrUT
CAN FLE (] COMPARATOR o] S20MAL
L ) b g ——]
' L " [}
y
sTATVS K 7
"g NOLEING AEOM TER n:u“mwm.
! l“ & BOFTWARE TREE RS
}, 3 MTEARUITS
MBO_COMMAND HO_TRg STIATE AD CONYERSION
! AESET TIMER §




vCt

+5V

)

)

T

ko™
by
r1z
TEsT
REF
foro
£
Resct INTEL
ER 897687
s s
2
1 piy | BERVE2 DTRSCTION
JRAGND piE| SERVEY DINECTION
| et
pse| scevor comrcTrow
L
wso.o] BCEVDL Pum
e o
Was.i| BCRVEE P
——_—*
ssoz] SERVES M
#
B2 REKL KO

Fig. 6 Controller Hardware

42

- »wqi




Y1.2 Arithmetic Operations Count :

A table of the aritﬁmetic operations count is shown below:

FXD/FLT ADD/SUB MUL/DIV SQRT ARCTAN D/A PVM

Quaternion Fixed 22 30 3
M¥podel Refer. Fixed i2 i2 - e
attitude Fixed 19 iz @ me—— 3 | m———
Con. Param. Float 28 27 3 -

Param. Estim. Float 5 13

Control Law Float 6 16

Delections Float 6 i1 1 meees e

The 8797 microcontroller performs 16x16 bit miltiplication-
7divisions in 6.25 micro sec. and 16 bit addition/subtractions in
cne micro sec. On the other bhand, the floating point
addition/subtraction and multiplication/division takes about 10
microsecond, and 22 microsecond respectively.

The floating point operations are performed by socftware. The
floating point numbers consist ©of a 16-bit mantissa, a 6 bit
exponent and two sign bits; a total of 24 bits.

The square root and arctan are performed using fixed point
arithmetic as well. In this case their maximum execution time is
estimated to be 68 micro sec. and 155 micro sec. respectively.
Floating point square root is obtained by scaling the number by
2" and using the fixed-point square root algorithn.

From the above analysis, the overall execution time per
sample including data shuffling, A/D and HSO set up is estimated
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to be less than 4.5 micro sec. Vith a sample rate of 50 sps, the
microcontroller will still have ample time to execute Zfurther

functions as guidance and communications.

CORCLUSION

This report ;ddresses some implementation issues of high psr-
formance missile attitude control using & 16-bit microcontroller.
The implementation included a numerically efficient attitude
reference system and a recently proposed nonlinear adaptive con-
trol system for rapid and precise large angle maneuver.

1t is shown that the microcontroller is not fully utilized.
Hence, other improved numerical technigues can be employed to
improve +the accuracy of the computations. For exanmple, an
improved integration metbod in the model reference and use of a
second order Pade approximation for updating the quaternion may
be considered. The controcl system may also be enbanced by
including lateral acceleration nmeasurements to achieve rapid cor-
rection of the missile incidence. Other on-board missile func-
tions as guidance and communications can easily be accommodated

in tke microcontroller as well.
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APPENDIX
[EEF R AR AR AR R AR R AR AR RN IR F RN T AT ATTITLX AN ERRRRRRA B R %/
* ! MISSILE ATTITUDE CONTROL x/
i T ey I IYY
/* Demonstration program for misslie attitude control x/
/¥ For clarity, memory space minimization is not considered x/
/* the program shows computationally efficient calculations x/
/*# using fixed point arithmetic and short floating point =/
/¥ arithmetic. x/
/* integer numbers here mesn 16-bit signed binary number of =/
/% absolute value less than one. - x/
/¥ floating peint numbers are 24 bit ( 16-bit mantissa, =/
/¥ 6 bit exponent, and two sign bits x/
[ SRR R ERTEEIT AT AIR AR RR A SR TA XA EITEXTTXEXZTTIXLEEXE X/
/=T | ; Sample pericd = 0.05 sec. x/
/* Pl, P2, P3, P4, P5, and P6; found from a Lyapunov equation =/
/* N1, N2, N3, N4, and N5 ; determine the dynamics of x/
/* controller parameters evoluticn */
/* BETAl, BETA2, BETA3, ; initial values of the =/
/¥ BETA4, BETAS controller parameters. x/
/* Ail, Ai2, Ai3, Bil, Dio0 ; for i =1, 2, 3. parameters of =x/
/¥ Dil, SKF_il, SKF_i2 i the model reference, *x/
/% SKF_Z1, SKF_Z2, SKF_23 i scale factors for control */
WA surfaces deflection. x/
:/* W1_SKF, W2_SKF, W3_SKF i+ Scale factors for angular */
"/* SKFF_W1, SKFF_W2, SKFF_W3 ; velocity mesurements from gyros =/
/% FEXTIXXXTLFAXXILTXSAXLXXR XXX RASSXXETEAERENFXITFEXEFTXTAEEE %/

#tinclude "stdio.h

-

int
int
int
int
float betal, beta2, beta3d, betad, beta5;

float theta_1l, theta_2,

tinclude "data.h”
/¥ EEEEXEXTIRXRAIXEIRARARKRREERS RN RAXXTATARRINAS KX SXB RS SR BERE %/

ql, g2, q3

cll, cl2,

float dtheta_1l,
float thetam_1,
float dthetam_1,
float e_1, e_2,
float =zeta_l, zeta_2, zeta_3;
float alpha_new,

/¥ EEXXXZLXSBEXXIRRAREARBRXAAELANIREE N ERER XXX AERAXIZXRENREIXXRRRXX X x/

main()
{
filoat x;
ql
thetam 1
dthetam_1
betal

betad

"

/* file contains all constants x/

v Q4
wl_wval, w2_val, w3_val,
yit_1, ylt_2, y2t_1, ¥w2t_2, w3t_1l, y3t_2;

cl

dt
th

d
e_

a

3, 23, c00,

rl, r2, r3;

cO;

theta_3 :

heta_2, dtheta_3;

etam_2,

thetam_3;

thetam_2, dthetam_3;
3, de_1, de_2, de_3 ;

lpha_old, e_new, e_old, de_new, de_old; *

0; q2
0; thetam_2

0; dthetam_2
BETAl; beta2
BETA4; betab

= 0; g3 = 0; g4 = L ;
= 0; thetam_3 = 0;

= 0; dthetam_3 = 0;

= BETA2; betald = BETA3;

BETADS;

08¢
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loop: while(timer != 00) x =

ad_ch{0);

wl_val

w2_val = ad_ch(1}:

"

w3_val ad_ch(2);

/¥ from the guidance system

rl = r_port(l};
r2 = r_port(2);
r3 = r_port(3);

attitud() ;

model_ref(};

/* now compute the control law
‘ c_law();

/* drive the servo mechanisms of the control surfaces

zeta_ 1 = SKF_Zl*zeta_)
z £ int(zeta_1)
pwa_ch(0,z);

geta_2 = SKF_z2*zeta_2
z = int{zeta_2)}

. pwm_ch(l,z);
zeta_3 SKF_Z3%zeta_3

nn

z int(zeta_3}
pwm_ch(2,z);

/* finally update the Parameters of the controller

raram_gst()

/* repeat for ever

}

goto loop
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3/* wait for the next sample *x/

/% read wl, w2, w3, from the gyros

/* find the attitude of the missile

/* compute the error in the attitude
1 = theta_1 - thetam_1
2 = theta_2 - thetam_2
3 theta_3 - thetam_3

/% and the rate of change of error

de_1l = dtheta_1 - dthetam_1
de_2 = dtheta_2 - dthetam_2
de_3 = dtheta_3 - dthetam_3

/* gel the attitude set points (normalized)

/* find the desired reference attitude
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SEEXEFTXEXXIXXIFITIIFIXINFIZIXNIXXXAIFIXXRINEXEREF AR XXX EXXAXXXARNESE %/
computes the missile attitude by integrating x/ :
the quaternion differential equation (2.3.4} =/
Integration is performed using Pade approximation x/
CONSTANTS: x/
W1_SKF, W2_SKF, W3_SKF, SKFF_W1l, SKFF_W2, SKFF_W3 */
INPUT : */
wl_val, w2_val, w3_val, ql, g2, q3 x/
OUTPUT : x/
updated ql, g2, g3, theta_l, theta_2, theta_3, x/
dtheta_1, detha_2, and dtheta_ 3 */
: 00, c0, cl1, €12, c13, c33, c23; x/
T3 1113112231131 2331112323 T Ty eIz N ) -
1t attitud()
P EEEERERE R AT AR RF AT FA AR R A AR R AKX KA KX R A X FAXXTRFETRRARRR %/
int wl_t, w2_t, w3_t;
int di, d2, d3, tmpl, tmp2, tmp3,tmp4;
wl_t = wl_val*Wl_SKF;/* skf = wi_max*T/L1l, Ll = 4 */
w2_t = w2_val*W2_SKF;/*% wi_max*T < PI */
wi_t = w3_val®»w3_SKF;
di = (wl_t*wl_t) « {(w2_t2*w2_t) + (w3_t*w3_t) ;
/% this is dl of eq. (2.3.20) */
a2 = 0.5+ di1/2 ;
d3 = 0.25/4d2 s+ /¥ this is 43 of eq. 2.3.20 %/
a2 = 0.5- dl1/2 ; .
dz = (d2*d3)%x4 ; /* this is d2 of eq. 2.3.20 */
wl_t = wl_t*d3 ;
w2_t = w2_t*d3 ;
w3_t = w3_t*d3 ;
tmpl = gl*d2 + qQ2*w3_t - qQ3*w2_t + qi*wl_t H
tmp2 = Q2%d2 - gl*w3_t 4 g3*wl_t + q4*w2_t H
tmp3 = Q3*d2 4 ql*w2_t + Q2Z*%wl_t - Q4*w3_t H
tmpd = Q4*d2 + ql*wl_t + g2*w2_t - q3*w3_t H
ql z tmpl H
q2 = tmp2 H
.93 £ tmp3 H
q4 = tmp4 H
-c00 = 4( 0.25 - 2%ql*g2%q3*q4) ; .
c0 = int_sqrt{c00) ;
tmpl = q4%q4 - QZ*qg2 H
tmp2 = ql%ql - Q3x*xq3 3 e
cll = topl + twpl : /% cij defined in eq. {2.3.10) =/ ')
cl2 = 2{ql*qQ2 - qQ3%q4) ;
c13 = 2{ql*qd + GgZ*q4)
c33 = —tmpl + tmp2 H
c23 = 2(q2%q3 + qlix*q4) ;
tmpl = int_atan( -c23,c33); /% normalized thetal %/
tmp?2 = int_atan( ¢i3,¢c0) ; /* normalized thetaZ #/
tmp3 = int_atan({ -cl12,cll); /% normalized thetald =/




