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Abstract

In this paper we present a globally convergent modification of Newton’s method
for integrating constitutive equations in elasto—plasticity of geomaterials. Newton’s
method is known to be g-quadratically convergent when the current solution ap-
proximation is adequate. Unfortunately, it is not unusual to expend significant
computational time in order to achieve satisfactory results. We will present a
technique which can be used when the Newton step is unsatisfactory. This scheme
can be considered as a modified version of the traditional concept of backtracking
along the Newton direction if a full Newton step provides unsatisfactory results.
The method is also known as line search technique.

The technique is applied to the fully implicit Newton algorithm for a harden-
ing or softening general isotropic geomaterials at the constitutive level. Various
solution details and visualizations are presented, which emerge from the realis-
tic modeling of highly nonlinear constitutive behavior observed in the analysis of

cohesionless granular materials.
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1 Introduction

Problem of accurately following the equilibrium path in numerical modeling of geoma-
terials elasto—plasticity has been researched for some time now. It has been shown
(Runesson and Samuelson [12], Simo and Taylor [14]) that consistent use of Newton iter-
ative algorithm on the global, finite element and local constitutive levels provides for fast
convergence. However, complexities of elasto—plastic constitutive models for geomateri-
als put high demand on the constitutive driver. In particular, low confinement region,
usually found near the soil surface or during liquefaction behavior of sands, with highly
nonlinear hardening and softening behavior, high dilatancy angles (non-associative be-
havior) and highly curved yield surface, can lead to the numerical failure (divergence)
of the constitutive driver. This leads to the interruption of finite element computations
and consequently requires rerun of the problem with smaller loading steps.

While the use of full Newton scheme improves rate of convergence, in some cases
the iterative algorithm does not converge at all. The necessary condition for good con-
vergence behavior of Newton methods is that current solution approximation is good
enough, i.e. it is within the convergence region of Newton method. If the current so-
lution approximation is not good enough, Newton method will not converge but rather
bounce through solution space until erroneous iterations are interrupted. One of the
strategies used to prevent failure of Newton methods is the line search technique. It
should be noted that line search will not cure all of the problems associated with lo-
cal, constitutive level Newton iterations. However, as long as the function (and their
derivatives) used in iterations (yield function, potential function, hardening/softening
functions) are analytic, line search will provide for global convergence in the sense de-
fined by Dennis and Schnabel [3].

Equilibrium iterations for material nonlinear finite element computations can be in
general separated in two levels. First iteration level is tied to the constitutive, elasto—
plastic computations. On this level, constitutive driver, for a given strain increment’
iterates in stress and internal variable space until convergence criteria is met. On the
second level, nonlinear finite element system of equations solver is iterating until balance
of internal and external forces is achieved. Global level iteration to achieve balance of
internal and external forces have seen use of line search techniques (eg. Crisfield [2],

Larsson et al. [10], Simo and Meschke [13]). In their recent paper, Dutko et al. [4],
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used a variant of line search algorithm for constitutive level iterations. They applied
this technique to the biaxial anisotropic yield criterion (Barlat et al. [1]) and presented
interesting and useful results. Of particular interest are statistics on number of line
search iterations for a sharply curved region of the yield line. Unfortunately, the actual
line search technique used was just briefly described.

The paper is organized as follows. Section 2 briefly describes elastic—plastic algo-
rithmic formulation based on the fully implicit, Newton procedure and the B Material
Model used in computations. Section 3 describes theory behind the line search tech-
nique and section 4 describes application of the line search techniques to the constitutive
integration problems. Section 5 presents numerical examples that illustrate described
developments.

It is worthwhile noting that while the presented techniques is applied to small defor-
mation elasto-plastic problems it has been used in the large deformation elasto—plastic
algorithms as well. However, inherent complexities of LDEP algorithms developments
might hide the basic ideas of using line search techniques so we restrict our presenta-
tion to small deformation elasto—plasticity. Although developments presented here are

simplified to small deformation format, the generality of the approach is not lost.

2 Elastic—Plastic Geomechanics

In this section we briefly present Backward Euler algorithms for the solutions of elastic—
plastic problems in geomechanics. To this end, we use the additive decomposition of
the strain increment into elastic and plastic parts together with flow theory of plasticity
and Karush—Kuhn—Tucker conditions to formulate the elastic—plastic problem. Detailed
description of the formulations can be found elsewhere (eg. Jeremi¢ and Sture [8]). The
fully implicit Backward Euler algorithm is developed in general stress tensor — internal

variable tensor setting and is based on the following equations
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where, €;, €; and mm. are the total, elastic and plastic strain tensors respectively, o;;

is the Cauchy stress tensor, ¢, represents suitable set of internal variables, h, is the

plastic moduli and F,,; is the yield surface function at the final position. The asterisk



in the place of indices in ¢, replaces n indices, so that for example in the case of isotropic
hardening ¢, is a scalar while for kinematic hardening ¢, is second order tensor. Equations

n+l. . n+1.DP
Oigs €ij>

(1), are the nonlinear algebraic equations to be solved for the unknowns
ntlg, and A. Newton iterative scheme is used to solve for the single vector return in stress
tensor — internal variable space. We can circumvent the problem of finding the solution
in the softening region, which, in general stress tensor — internal variable space belongs
to non—convex space, by defining the tensor of stress residuals. Then, by working on
the problem of minimizing the stress residual we convert the non—convex problem to the
convex one. Of course, as usual, by using Newton iterative method, we have to provide
for continuation of iterative procedure even if the Newton step is not satisfactory. That
is precisely the point where the line search technique shows it usefulness.

The Backward Euler algorithm is based on the elastic predictor — plastic corrector
strategy:

1 d
"o =% — X B " (2)

where 7"°%;; = Ejp €x is the elastic trial stress state and ""'my, = (0Q/90w)|, ., is the

n+
gradient to the plastic potential function in stress space at the final position. We define

a tensor of residuals
Tij = Oij — AE&Q& — A Ejj :+H§Ev (3)

that represents the difference between the current stress state o;; and the Backward
Euler stress state E&qa — X Ejji ", By using first order Taylor series expansion of
the tensor of residuals 7;; and the first order Taylor expansion of the yield function F,
and after some algebraic manipulations we obtain the change in consistency parameter
A
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We have also introduced the fourth order tensors Tjjp,, and H;jy,:
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where ny, = 0F/00m,, £ = 0F/0q. and dq. = dX\ h.(04j,q.). With the solutions for
d\ we can write the iterative solution for do,,, and dg,, in the extended stress — internal

variable space as:
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Iterative procedure is continued until the objective function ||r;;|| = 0 is satisfied given

a certain tolerance.
In order to start the Newton iterative procedure, we use forward Euler solution as a

starting point
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where “?%%() denotes the point where trial state crosses yield surface.
Consistent, Newton iterations on the constitutive level are reflected on the global,
finite element level through use of algorithmic tangent stiffness (ATS) tensor A7°E¢?

pgmn
defined as

n+1 n+l,. ..
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where we have used reduced stiffness tensor R,z = A:iﬂ&s:vL Eijii. It is important
to note that the line search technique described later does not alter the ATS tensor
ATSper .. A detailed derivation is given in Jeremi¢ and Sture [6].

We use small deformation version of the B material model (Jeremi¢ et al. [5]) for
our computations. The model relies on the development behind the so called MRS-Lade
model (Sture et al. [16]). The B-Model is a single surface model, with uncoupled cone
portion and cap portion hardening. Very low confinement region was carefully modeled
and the yield surface was shaped in such a way to mimic recent findings obtained during
Micro Gravity Mechanics tests aboard Space Shuttle (Sture et al. [15]). Figure (1)
depicts meridian and deviatoric traces and a full yield surface. It also depicts cone and

cap hardening/softening functions. Detailed description of the model is given by Jeremié
et al. [5].

3 Line Search Technique

In this section we develop theory behind the line search techniques. We base our de-

velopments on concept of minimization theory for a scalar function f(z.). We show
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Figure 1: (a) Meridian trace of yield, ultimate or potential surface. (b) Change of the
deviatoric trace of yield surface changes along the mean stress axes. (c¢) Yield and/or po-
tential surface in principal stress space. (d) Cone hardening function. (e) Cap hardening

function.

later that in our case, function to be minimized will be the energy norm of the vector of
residuals r;; (Eq. 3).
The minimization problem is defined as (eg. Dennis and Schnabel [3].):

min f(z,): R" — R (11)

TxER®

The basic idea of a global method for minimization is to take the step that lead downhill
for the function f(x,). One chooses a direction p, from the current point z¢ in which
f(z,) decreases initially and a new point = in this direction from z¢ is such that f(z]) <
f(x5). Such a direction p, is called a descent direction. From the mathematical point of
view, p, is a descent direction from z¢ if the directional derivative of f(x,) at x¢ in the

direction p, is negative:
of (x%)

o P <0 (12)



If (12) holds, then it is guaranteed that for a small positive ¢, f(z¢ + (p.) < f(2¢). The

idea of line search algorithm can be described as follows:
e At iteration k do:

— calculate a descent direction p*,

— set 2t «— (2F + (FpF) for some (¥ that makes zF! an acceptable next

*

iterate.

Figure (2) shows the basic concept: select z**! by considering the half of a one—
k

-

dimensional cross section of f(x,) in which f(z,) decreases initially from z

fx+Zpk)

Quadratic

approximation

df(xg)
sope | i, P, <0

(=0 ¢

Figure 2: A cross section of f(x,) from z* in the direction p*.

The term “line search” refers to the procedure of choosing the acceptable ¢*. The so
called “exact line search” accounts for finding the exact solution of the one-dimensional
minimization problem, i.e. finding the exact ¢* so that f(a* + (*p¥) attains minimum.
This was the preferred approach to the problem until mid 1960s. More careful compu-
tational testing has led to the use of “slack line search” which has a weak acceptance
criteria for (¥ as a more computationally efficient procedure. The common procedure
now is to try the full Newton step first (with ¢(¥ = 1) and then, if (¥ = 1 fails to satisfy
criterion, to reduce ¢* in a systematic way, along the direction defined by that step.

Systematic reduction of ¢* along the descent direction can be achieved by applying

the line search techniques through backtracking algorithm:

Given a € (0, 3):

¢F=1



while f(z¥ + C*pF) > f(aF) + Q@&?SE do:

@|§
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Dennis and Schnabel [3] provide rather powerful convergence results for properly

chosen steps.

4 Application to Elasto—Plastic Computations in Ge-
omechanics

In this section we describe the application of line search technique to the elasto—plastic
constitutive level equilibrium iterations. The objective function that is followed is the
Euclidean norm of tensor of residuals r;;. To this end we rewrite the elastic predictor

plastic corrector Eq. (2) as:
:iqa. = E&Q& - m A ma.i ztSE Gwv

It is important to note that the addition of scalar line search parameter ( does not
change the initial equations. Moreover, as ( is only used in line search improvement
and is not a function of any state variable (stress, internal variables or displacements)
first order Taylor expansions used to come up with the iterative steps (Eq. (4) — (7)
are not changed. The only difference is that now solution for the change in consistency

parameter d\ reads:
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With this changes the line search algorithm can now be specialized to elasto—plastic

implicit computations. In each iterative step k£ we do:
e Given 3 € (0,3):

e (¥ =1; (Full Newton step)



e while
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We always start with ¢¥ = 1 (that is, a full Newton step) and only if that iteration
fail, we apply the backtrack algorithm. As we are following value of the Euclidean norm
of tensor of residuals r;;, failure of Newton step is defined as divergence of that scalar
variable. In other words, increase the value of Euclidean norm of tensor of residuals r;;
means that our Newton step in the extended stress — internal variable space is not valid.
It also means that convergence of the Newton iterative procedure is questionable and

that it will most probably fail in this iterative step.

5 Numerical Example

Previous theoretical developments has been implemented in FH (Finite Element Inter-
preter) finite element program. FH is our experimental software platform, written in
C++ with some Fortran modules. It is build on top of nDarray and FEMtools class
libraries (Jeremi¢ and Sture [9]). The line search algorithm is implemented on both
global, finite element level as well as on the local, constitutive level, described in this
paper. We follow nonlinear finite element iterations in analyzing directional shear cell
(DSC) experiments done at the University of Colorado at Boulder. For example McFad-
den ([11]) used DSC apparatus in order to investigate shear behavior of various sands.
Here we present modeling of particular plane strain experiment Ky14.5 — 30 in figure
(3).

Loading is divided in two stages. The first stage comprises isotropic compression to
target confinement state (in this case p = 180.0 kPa). The second stage is a shear loading
until instability occurs (instability in the experimental test, numerically we can follow
the specimen beyond limit point). It is not clear if the instabilities in DSC experiments
(loss of control over loading process) were due to the bifurcation phenomena inside the
specimen or to the global rotation of the specimen. Since DSC is a load controlled device,

only shear deformation of v,, ~ 3.5 % was reached in the laboratory experiment.
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Figure 3: Numerical modeling of a shear test Ky14.5 — 30 a) Shear stress — axial strain

curves. b) Volumetric strain — axial strain curves.

As the numerical experiment is proceeding, the length of the loading steps is con-
trolled by using the variable hyperspherical arc-length constraint ([7]). In this particular
case, the Newton iterative algorithm failed at constitutive level after stress state advanced
into elastic—plastic regime. This part of the elastic—plastic computations is sometimes
problematic, since there is a sudden activation of the hardening mechanism. In this
particular case, we have stopped the computations at the beginning of the problematic
incremental step. Then, we resumed iterations by manually decreasing the step size from
0.5% to 0.1%. Figure 4(a) shows values of the norm of the tensor of residual ||r;;|| in
such a successful iteration. It can be seen from Fig. 4(a) that convergence is quite fast,
leading to the conclusion that the initial estimate of the stress and internal variable state
was within the Newton convergence region.

Similar to the previous numerical experiment, we resumed computations at the be-
ginning of the problematic step, but this time with larger incremental deformation of
0.5% and with the line search algorithm turned off. Figure 4(b) shows values of the norm
of the tensor of residual ||r;;|| for the first incremental step. We can observe that the
initial, uncorrected iteration produces non—converging set of values for the norm of the
tensor of residual ||r;||. It is interesting to note that the very first iterative step takes the
value of ||r;;|| to higher than initial values. Moreover, Figure 5(a) shows that although
value of evaluated yield surface F' initially point downward from the initial predictor, it
is eventually diverging too.

Finally, once again we resume computations at the beginning of the problematic

incremental step, now with the line search algorithm turned on. It can be seen from
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Figure 4: (a) Residual norm ||7;;|| values for a successful iteration with small incremental
steps (one step of 0.1% shear deformation). (b) Residual norm values ||r;;|| values for

erratic and corrected iterations (one step of 0.5% shear deformation).

Fig. 4(b) that not only the algorithm helps advance the iterations without any signs of
divergence, it also produces a very good convergence rate. This, of course, is the result
of our algorithm always first trying the full Newton step (for which we set (¥ = 1).

Figure 5(b) depicts the problematic, first iterative step from Figure 4(b) in some
more details. We follow the value of the objective function ||r;;|| through 10 subincre-
ments within the problematic iterative step. At this point it is important to remember
that Newton iterative algorithm makes a quadratic approximation (in multidimensional
space) of the objective function, here the Euclidean norm ||r;;||. In this particular step,
the approximation for ||r;;|| does a poor job, and although the objective function ini-
tially decreases, eventually its final value is higher than that it had at the initial state.
It is interesting to note that at 5th subincrement, objective function [|r;;|| actually does
attain a minimum value, but full Newton step (at 10th subincrement) leads to a higher
than initial values for ||r;;||.

Figure (6) depicts failed and corrected iterations in the space of stress invariants p,

g and 0

1
wm,w@.m@. cos 360 =

w/\W wm@..m.wm\ﬁ. 1
9 3 W m@. = Q.@. - |Q.\%%S. C.@v

In this particular view, we are looking at the B model yield surface from the tensile
region (negative p). Divergent iteration is oscillating through the stress space and there

is no sign of recovery. On the other hand, corrected oscillation, after modifying one

11



le-01

le+04
erratic iterations
- N )
le+02 e
/
Fle02 |
<
L 1e+00 | =}
c S )
o »n function
B o
5 5
1le-02
h . . S1e03
) correct iterations IS
2 =}
< .
>1e-04 H quadratic
approximation
‘ ‘ ‘ 04 ! — =
le-06 5 0 s 2 1e04 00 0.25, 050 075 1.00
a) number of iterations b) subincremented iterative step

Figure 5: (a) Yield surface values F' for erratic and corrected iterations (one step of 0.5%

shear deformation). (b) Dissection of failed iteration.

iterative step by the line search algorithm, converges successfully.

6 Summary

In this paper we have presented a globally convergent modification of Newton’s method
for integrating constitutive equations in elasto—plasticity of geomaterials. The method
has been developed in rigorous mathematical framework and implemented in experi-
mental finite element program FH. The practical use of method was illustrated in details.
The application of line search techniques in numerical modeling of elasto—plasticity of
geomaterials should provide for robust following of equilibrium path on both, global,

finite element and local, constitutive levels.
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