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Abstract

The PEER OpenSees project covers research on the “Next Generation Analytical Platform

for Nonlinear Dynamic Analysis.” This report presents in some detail work performed for

the “Development of Geotechnical Capabilities in G3 OpenSees,” PEER project 2132000-

3 started in May 2000. This report describes:

• Development and implementation of the universal, template constitutive driver for

OpenSees;

• Development of fully coupled, solid–fluid formulation;

• Development and implementation of visualization tools for solids in OpenSees;

• Examples of Soil–Foundation–Structure Interaction Simulations; and

• Development of OpenSees implementation quality control tools;
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Chapter 1

Introduction

This report presents in some detail work performed for the PEER project, “Development

of Geotechnical Capabilities in OpenSees”. The project lasted from May of 2000 until

October 2001. While the report cannot cover all the work performed enough details are

given for the interested reader, while a list of referenced papers that give a more detailed

overview of work is provided. In particular this report describes:

• Development and implementation of the universal, template constitutive driver for

OpenSees (Chapter 2);

• Development of fully coupled, solid–fluid formulation (Chapter 3);

• Development and implementation of visualization tools for solids in OpenSees (Chap-

ter 4);

• Examples of Soil–Foundation–Structure Interaction Simulations (Chapter 5); and

• Development of OpenSees implementation quality control tools (Chapter 6).
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Chapter 2

Template Elastic–Plastic

Computations

In this part of the report some details are presented of a new approach to computa-

tions in elasto–plastic geomechanics. The approach is based on object–oriented design

philosophy and on observations of the similarity of most incremental elastic–plastic ma-

terial models. This new approach to elastic–plastic computations in geomechanics allows

for creation of template material models. The analysis of template material models will

in turn allow for easy implementation of other elastic–plastic material models based on

object–oriented design principles. A detailed description of the Template Elastic–Plastic

Computational Tools is given by [Jeremić and Yang, 2001], (also available in pre-print

at http://sokocalo.engr.ucdavis.edu/~jeremic/publications/CGM0102.pdf). The

following presents a brief overview of some of the command examples and illustrative

simulations.

2.1 Command Examples

In order to facilitate the smooth creation of new material models, an interpreter was im-

plemented using Tool Command Language (Tcl) [Ousterhout and Tcl/Tk Consortium, ].

As an example the input commands for the elastic–plastic material model created from

the Drucker–Prager yield surface, the von Mises potential surface, and the linear scalar

3



hardening law are presented. The commands that create this model are given below:

set YS "-DP"

set PS "-VM"

set ES1 "-Leq 1.0"

set ET1 "-Linear 0.0"

set stressp "0.10 0 0 0 0.10 0 0 0 0.10"

set EPS "70000.0 70000.0 0.2 1.8 -NOD 1 -NOS 2 0.2 0.0 -stressp $stressp"

nDMaterial Template3Dep 1 -YS $YS -PS $PS -EPS $EPS -ELS1 $ES1 -ELT1 $ET1

The first four lines are used to set up the elastic–plastic material model:

1. Yield Surface using Drucker–Prager function set YS "-DP".

2. Plastic flow directions using von Mises potential surface set PS "-VM".

3. Scalar evolution law (hardening and/or softening) set ES1 "-Leq 1.0" . This par-

ticular command describes the single scalar evolution law evolving with equivalent

strain, using number 1.0 as a coefficient.

4. Tensorial evolution law set ET1 "-Linear 0.0". In this particular case there is

one tensorial hardening variable using plastic deviatoric strain but the coefficient is

specified as 0.0, so it does not affect the solution.

The fifth line is used to set up the initial stress at a given material point. In this

particular case, set stressp "0.10 0 0 0 0.10 0 0 0 0.10", the initial stress state,

is set to the isotropic stress σxx = σyy = σzz = 0.10. The sixth line is used to set up

the elastic–plastic state. In this case the initial and the current modulus of elasticity

E0 = 70000.0, E = 70000.0 are set. The initial modulus of elasticity E0 is the one at

reference pressure (100kPa), and E is the current one. One can supply E = 0.0, for it

is computed (by default) according to the current pressure using the Non–linear Elastic

Model #1 described by [Jeremić and Yang, 2001]. The Poisson’s ratio is also set as ν = 0.2

as well as the mass density ρ = 1.8. After that, the number of tensorial internal variables

(-NOD 1) and the number of scalar internal variables as well as their initial values (-NOS

4



2 0.2 0.0) are set. Here the friction angle φ is specified in terms of α = 2 sin φ/(
√

3(3−
sin φ)), which in this case is defined as α = 0.2 and a cohesion, defined as c = 0.0.

Lastly, that same command line provides the initial stress state for the elasto–plastic

state (-stressp $stressp). The last command line nDMaterial Template3Dep 1 ...

is used to combine all the ingredients into a new elastic–plastic material model which is

labeled 1.

2.2 Example Simulations

In this section a number of representative numerical simulations are presented. The main

goal is to show how different yield criteria, flow directions, and hardening/softening rules

can be combined to create elastic–plastic material models.

One of the simplest models to be tried first is obtained by combining the Drucker–

Prager yield surface, the Drucker–Prager flow directions, and the perfectly plastic hard-

ening rule. Figure 2.1 shows the results from a monotonic triaxial loading on one such

sample. As expected the load–displacement response is bilinear. The volumetric response

is at first compressive (within the elastic limits) and then becomes dilative when the

material becomes elastic–plastic.
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Figure 2.1: Monotonic triaxial loading on soil sample modeled using Drucker-Prager yield

surface, Drucker-Prager flow direction, and perfectly plastic hardening rule.

Figure 2.2 shows results for cyclic loading of a triaxial sample using the same simple
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material model described above. The load–displacement curve follows a simple closed

loop. Volumetric response is compressive (elastic portion) and then becomes dilative

upon yielding of the elastic–plastic material. The compressive response is recovered during

unloading but the volumetric response is dilative in general.
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Figure 2.2: Cyclic triaxial loading on soil sample modeled using Drucker-Prager yield

surface, Drucker-Prager flow direction, and perfectly plastic hardening rule.

Figure 2.3 shows the results for cyclic loading of a triaxial one–element setup using

the Drucker-Prager yield surface, the von Mises flow direction, and the nonlinear tensorial

hardening rule. The load–displacement curve shows a sizable elastic region, particularly

for larger confinement stress. Volumetric response is mostly compressive. It should be

noted that the initial plastic flow directions are deviatoric (initial plastic potential is von

Mises surface). During the loading–unloading–reloading cycles the von Mises plastic po-

tential surface will rotate (since rotational kinematic hardening was used) and thus create

significant plastic volumetric strains. Those volumetric strains can be easily followed in

εv − εa diagram of Figure 2.3.

The results presented above show the behavior of elastic–plastic materials obtained by

combining different yield surfaces, plastic flow directions (potential surfaces) and harden-

ing rules.

A more realistic response for soils can be obtained by combining the above elements

of an elastic–plastic model with other, more sophisticated elements. For example, an

excellent material model for sand can be obtained by combining the Drucker-Prager yield
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Figure 2.3: Cyclic loading results for Drucker-Prager yield surface, von Mises flow direc-

tion, and nonlinear tensorial (rotational kinematic) hardening rule.

surface, the Manzari-Dafalias flow direction, and the bounding surface hardening rule

[Manzari and Dafalias, 1997].

Figure 2.4 shows the results for a monotonic loading of a triaxial one element setup

using Drucker-Prager yield surface, the Manzari-Dafalias flow direction, and the bounding

surface hardening rule. The material model parameters used are taken from a paper by

[Manzari and Dafalias, 1997] and represent a normally consolidated sand specimen.
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Figure 2.4: Monotonic triaxial compression loading results for normally consolidated soil

sample modeled using Drucker-Prager yield surface, Manzari-Dafalias flow direction, and

bounding surface hardening rule.

Figure 2.5 shows the results for the highly overconsolidated sand specimen using a simi-

lar elastic–plastic material model, namely the Drucker-Prager yield surface, the Manzari-
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Dafalias flow direction, and the bounding surface hardening rule. Both the hardening

and then softening load–displacement responses are observed. The volumetric response is

initially compressive and then the specimen dilates.
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Figure 2.5: Monotonic triaxial compression loading results for heavily overconsolidated

soil sample modeled using Drucker-Prager yield surface, Manzari-Dafalias flow direction,

and bounding surface hardening rule.

Figure 2.6 shows the results for cyclic triaxial loading of a normally consolidated sand

specimen using the same elastic–plastic material model as above. The load–displacement

curve shows near saturation after a few cycles, while the volumetric response is compres-

sive.
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Figure 2.6: Cyclic triaxial loading results for normally consolidated soil sample modeled

using Drucker-Prager yield surface, Manzari-Dafalias flow direction, bounding surface

hardening rule.
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One of the most widely used elastic–plastic material models is the modified Cam–Clay

material model. Figures 2.7 – 2.9 show the results for the triaxial, one–element setup us-

ing the Cam–Clay yield surface, the Cam–Clay potential surface and nonlinear scalar

hardening rule (Cam–Clay). In particular, Figure 2.7 shows the results for a slightly

overconsolidated specimen. The load–displacement response is initially linear and then

elastic–plastic, while the volumetric response is compressive. Figure 2.8 shows the re-
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Figure 2.7: Monotonic triaxial compression on slightly overconsolidated soil sample using

Cam–Clay yield surface, Cam–Clay flow direction, and nonlinear scalar hardening rule

(Cam–Clay).

sponse for the same material parameters as above except that the specimen is heavily

overconsolidated. Initial load–displacement response is elastic, while after yielding, the

response curve softens toward the critical state. The volumetric response is initially com-

pressive, while after yielding it becomes dilative. Figure 2.9 shows the response for a cyclic

loading of a triaxial, one–element setup using the Cam–Clay yield surface, the Cam–Clay

flow direction, and the nonlinear tensorial (rotational kinematic) hardening rule.

Figure 2.10 shows a monotonic shearing test for a slightly overconsolidated soil speci-

men. The elastic–plastic material model used was represented by a combination of Cam–

Clay yield and potential surfaces, and a nonlinear scalar hardening rule. Figure 2.11

shows the results for a cyclic shear test using a material model similar to that above. The

only difference is that the the soil sample is now highly overconsolidated. It is interesting

to note that the sharp failure point, expected for the highly overconsolidated specimen
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Figure 2.8: Monotonic triaxial compression on heavily overconsolidated soil sample using

Cam–Clay yield surface, Cam–Clay flow direction, and nonlinear scalar hardening rule

(Cam–Clay).
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Figure 2.9: Cyclic triaxial loading on slightly overconsolidated soil sample using Cam–Clay

yield surface, Cam–Clay flow direction, and nonlinear tensorial (rotational kinematic)

hardening rule.

modeled using the Cam–Clay model (compare with Figure 2.8), is missing. The explana-

tion is that the state of stress in the one element shear model is not uniform and some

Gauss–points fail before others, thus smoothing the response curves.
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Figure 2.10: Monotonic shearing of a slightly overconsolidated soil sample using Cam–Clay

yield surface, Cam–Clay flow direction, and nonlinear scalar hardening rule (Cam–Clay).
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Figure 2.11: Cyclic shear loading on highly overconsolidated soil sample using the Cam–

Clay yield surface, the Cam–Clay flow direction, and nonlinear scalar hardening rule (of

Cam–Clay type).
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Chapter 3

Fully Coupled, Solid–Fluid

Formulation and Implementation

In this section a brief description is given of the formulation and implementation of the

fully coupled, solid fluid solid finite elements. Their implementation into OpenSees is

currently under way (as of mid–September 2001) and first test runs are expected by early

October 2001.

3.1 Governing Equations for Fully Saturated

Behavior with a Single Pore Fluid

The formulations described below follow earlier work [Zienkiewicz and Shiomi, 1984]. Al-

though the formulation may seem overly detailed (a lot of equations), they are used as

reference for implementation. The nDarray tool [Jeremić and Sture, 1998] is used for

implementing the equations below directly into OpenSees.

The effective stress principle is formulated as

σ
′
ij = σij + δijp (3.1)

Constitutive relations are written in incremental format as

dσ
′
ij = Eijkl

(
dεkl − dε0

kl

)
(3.2)
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The strain increments of the soil matrix can be determined in terms of displacement

increments dui as (small strain assumption)

dεij =
1

2
(dui,j + duj,i) (3.3)

The overall equilibrium or momentum balance relation for the soil-fluid “mixture” can be

then written as

σij,j − ρüi − ρf [ẅi + ẇjẇi,j] + ρbi = 0 (3.4)

where bi is the body force acceleration. The underlined term refers to the acceleration of

the fluid, written in Eulerian terms and including the relative convective term.

The second equilibrium equation ensures the momentum balance of the fluid, written

as

−p,i − Ri

n
− ρf üi − ρf [ẅi + ẇjẇi,j]/n + ρfbi = 0 (3.5)

in which Ri represents the viscous drag forces which, assuming the Darcy seepage law,

can be written as

Ri

n
= k−1

ij wj or = k−1wi (3.6)

where kij represents non–isotropic Darcy permeability coefficients.

The flow conservation equation is written as

wi,i + αε̇ii +
ṗ

Q
+ n

ρ̇f

ρf

+ ṡ0 = 0 (3.7)

where

1

Q
≡ n

Kf

+
α − n

Ks

∼= n

Kf

+
1 − n

Ks

(3.8)

3.2 General Mixed Numerical Solution

A Modification of Variables is introduced. In place of the relative displacements of the

fluid wi the total displacement of the fluid Ui is

Ui = ui +
wi

n
(3.9)
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Then the equation of the solid skeleton equilibrium becomes

σ
′
ij,j − (α − n)p,i + (1 − n)ρsbi − (1 − n)ρsüi + Ri = 0 (3.10)

The second equation will simply be [n × (3.5)], i.e.,

−np,i − Ri − nρf (üi +
ẅi

n
) + ρf ẇjẇi,j + nρfbi = 0 (3.11)

By noticing Üi = üi + ẅi/n and neglecting the ẇjẇi,j term,

−np,i + nρfbi − nρf Üi − Ri = 0 (3.12)

The main unknowns ui, Ui, and p can be approximated by using shape functions as

ui = Nu
K ūKi

Ui = NU
KŪKi

p = Np
K p̄K (3.13)

After some algebraic computations the system of discretized equations reads


Ms 0 0

0 0 0

0 0 Mf







¨̄u

¨̄p

¨̄U


 +




C1 0 −C2

0 0 0

−CT
2 0 C3







˙̄u

˙̄p

˙̄U


 +




KEP −G1 0

GT
1 P GT

2

0 −G2 0







ū

p̄

Ū


 =




f̄s

f̄p

f̄f



(3.14)

or




(Ms)KijL 0 0

0 0 0

0 0 (Mf )KijL







¨̄uLj

¨̄pL

¨̄ULj


 +




(C1)KijL 0 −(C2)KijL

0 0 0

−(C2)LjiK 0 (C3)KijL







˙̄uLj

˙̄pL

˙̄ULj




+




(KEP )KijL −(G1)KiL 0

(G1)LjK (P )KL (G2)LjK

0 −(G2)KiL 0







ūLj

p̄L

ŪLj


 =




(f̄s)Ki

(f̄p)K

(f̄f )Ki


 (3.15)

Or written in a familiar form as

Mẍ + Cẋ + Ku = f (3.16)
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where

Ms = (Ms)KijL =

∫
Ω

Nu
K(1 − n)ρsδijN

u
LdΩ

Mf = (Mf )KL =

∫
Ω

NU
KnρfδijN

U
L dΩ

C1 = (C1)KijL =

∫
Ω

Nu
Kn2k−1

ij Nu
LdΩ

C2 = (C2)KijL =

∫
Ω

Nu
Kn2k−1

ij NU
L dΩ

C3 = (C3)KijL =

∫
Ω

NU
Kn2k−1

ij NU
L dΩ

KEP = (KEP )KimP =

∫
Ω

Nu
K,jDijmlN

u
P,ldΩ

G1 = (G1)KiL =

∫
Ω

Nu
K,i(α − n)Np

LdΩ

G2 = (G2)KiL =

∫
Ω

nNU
K,iN

p
LdΩ

P = PKL = [

∫
Ω

Np
K

1

Q
Np

LdΩ]pL

(f̄s)Ki = (fu
1 )Ki − (fu

4 )Ki + (fu
5 )Ki

(ff )Ki = (f1)Ki − (f2)Ki

(fu
1 )Ki =

∫
Γt

Nu
Knjσ

′′
ijdΓ

(fu
4 )Ki =

∫
Γp

Nu
K(α − n)nipdΓ

(fu
5 )Ki =

∫
Ω

Nu
K(1 − n)ρsbidΩ

(f1)Ki =

∫
Γp

nNU
KnipdΓ

(f2)Ki =

∫
Ω

NU
KρfbidΩ (3.17)

Nu,Np,NU are shape functions of the skeleton fluid and pore pressure. The expressions

ρ, ρs, ρf are the density of the total, and the solid and fluid phases, respectively. The

porosity n, is used in the definition ρ = (1 − n)ρs + nρf .
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3.3 Fully Coupled Analysis of Soils in Large

Deformation Realm

Development of the finite element formulation for solving fully coupled, solid-fluid prob-

lems in geomechanics has also begin. The formulation is based on earlier work of [Biot, 1972];

[Zienkiewicz and Shiomi, 1984]; [Coussy, 1995]; and [Jeremić et al., 2001].

The formulation is quite general in that it can handle elastic-plastic geomaterials

subjected to arbitrarily large deformations. The formulation is also capable of treating

compressible and/or incompressible pore fluid. The Lagrangian format is assumed for

the solid phase while deformations of the fluid phase are written in Eulerian format. It

is shown that the multiplicative decomposition of the deformation gradient, utilized in

the large deformation elastic-plastic formulation for solid phase, can be used to precisely

control the volumetric response of the fluid phase. The fluid content is decomposed

additively. The basic unknown variables are the absolute displacement of solid phase

(ui), pore pressure (p), and relative displacement of fluid phase (Ui). The strong form is

based on the Equation of Motion (3.18), Fluid Mass Conduction (3.19), and Fluid Mass

Conservation (3.20).

Pij,j + (ro + m)bi − ρs
o(1 − n)üi − (m + ρfl

o n)Üi = 0 (3.18)

JnF−1
ij U̇i + kij

[
p,j + ρflFijbi − ρflFijÜi − ρflFijai

]
= 0 (3.19)

(1 − n)Ėiiρ
fl +

(
n

Kfl

+
(1 − n)

Ks

)
(ṗ + p,iu̇i) + Jρfln

(
F−1

ij U̇i,j + F−1
ij,jU̇i

)
= 0 (3.20)

where the following notation is used: Pij = First Piola–Kirchhoff stress tensor; r0 = Mass

density; m =, Fluid mass content per initial volume; bi = Body force; ρs
o = Initial mass

density for solid phase; ρfl
o = Initial mass density for fluid phase; n = Porosity; Fij =

deformation Gradient; J = Jacobian of the transformation J = det Fij; kij = Permeability

tensor (anisotropic); ρfl = Current mass density for fluid phase; ai = Tortuosity vector;

Dkm = Lagrange strain rate; EIJ = Lagrange strain tensor; Ks = Bulk modulus of the

solid phase; and Kfl = Bulk modulus of the fluid phase.
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The development of this formulation is nearing completion and implementation in

OpenSees will start soon.
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Chapter 4

Visualization

Our work on visualization is guided by the need to understand the vast output of 3D

simulations of soil–foundation–structure interactions. The work is progressing on two

fronts. The first is a collaboration with the Center for Image Processing and Interactive

Computing (CIPIC) at UC Davis on visualizing tensor fields in 3D, more specifically

visualizing stress tensor fields using a program named Fantom [Scheuermann et al., 2000].

This work has already resulted in a submitted paper [Jeremić et al., 2001]. The second

front involves performing less fancy visualizations of models (meshes), plastic zones, and

various other results from simulations using the Joey3D graphics program, specifically

developed for the visualization of OpenSees outputs from solid elements.

This chapter presents examples of both tensor visualizations as well as visualizations

using Joey3D.

4.1 Visualizations Using Fantom

Figures 4.1(a,b) shows hyperstreamsurfaces for minor principal stress (compression) for (a)

a single–pile and (b) a four–pile group example. In Figure 4.1(a), the hyperstreamsurface

starts at the center line of a pile and extends through the concrete (in both directions) until

it reaches the surrounding soil. The hyperstreamsurface shown in Figure 4.1(a) reveals

the stress field in more detail. The twisting and “discoloring” of the hyperstreamsurface

toward the bottom of the pile can be explained by the fact that the stress field in the
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concrete pile is far away from the main bending effects close to the surface. The state

of stress thus deviates by just a small amount from the initial state induced by its own

weight. Such a small change in stresses leads to a near–uniform green hue. A “kink” in

direction and color noticeable close to the surface is a part of the hyperstreamsurface that

ends in the soil, and thus by moving from a stiff (concrete) toward a soft (soil) medium,

has much smaller minor (compressive) stresses.

(a) (b)

Figure 4.1: Hyperstreamsurfaces for minor principal stress (compression) for (a) a single–

pile and (b) a four–pile group.

Figure 4.1(b) represents the minor (compressive) principal stress hyperstreamsurface

for the four–pile group. In this figure one pile was removed from the model to simplify

the view. Note the interesting “shading” effect apparent behind the left pile in this figure.

The hyperstreamsurface starts at the center of that pile and extends outside, ending in

soil. This pile group is much stiffer than the one–pile example. The effects of bending

are much smaller, and the four–pile group behaves like a stiff frame embedded in soil.

The observed deformation pattern is thus closer to horizontal translation with a large

horizontal resistance and small bending. The hyperstreamsurface extends into the soil

outside the pile group, with apparent compressive stress. However, just behind the pile

but inside the pile group, the minor principal stress changes significantly in value and then

curves by almost 90◦. The twist of the minor principal stress hyperstreamsurface clearly

demonstrates the pile–group effect: Maximal compressive stress (minor principal stress)

is acting between two piles in a direction perpendicular to the pile loading direction. This
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finding contradicts the current belief about stresses in pile groups. More important, a large

“shading” effect is observed which, when combined with the twisting of the minor principal

stress, suggests that the two back piles are loaded mostly in a direction perpendicular to

the global loading direction.

4.2 Visualizations using Joey3D

While developments related to the Fantom program deal more with new methods for

visualization of the results of geomechanics computations, the necessities of visualizing

day–to–day results have led us to develop a simple graphics program based on the OpenGL

graphics libraries. The program is named Joey3D and some illustrative visualizations

obtained by using this program are presented below.

Figure 4.2: Visualization with Joey3D: displaced piles, moment diagram (from integrated

normal stresses), shear force diagram (from integrated shear stresses), and horizontal

pressure (from the first derivatives of shear forces).
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Figure 4.3: Visualization with Joey3D: normal stresses in a solid pile.

a) b)

Figure 4.4: Plastified zones (plastic Gauss–points) during static pushover analysis of single

pile. Visualization with Joey3D: (a) side view, (b) top (plan) view.
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Chapter 5

Examples of

Soil–Foundation–Structure

Interaction Simulations

The research described also included performing a number of SFS interaction simulations

to test the concepts presented in previous chapters. Both static and dynamic simulations

were performed. Some illustrative examples are presented below. More detailed analysis

results can be found at web–site:

http://sokocalo.engr.ucdavis.edu/~jeremic/OpenSees/Piles.

5.1 Static Pushover Tests

A number of static pushover tests were simulated for a single pile. In the analysis currently

being done the behavior of a single pile system in layered soils is being analyzed. Figure

5.1 shows the model and the finite element mesh.

Figures 5.2 and 5.3 show plastic zones (plastified Gauss–points) for the two cases. Case

#1 comprises layers of sand and clay; case #2 comprises a single layer of clay throughout

the soil.

Also developed was the automatic generation of P–Y curves from numerical simulation

results. Some initial results are presented in Figures 5.4 and 5.5.
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a)

Case 1: clay

Case 2: sand

Case 1 and 2: sand

Case 1 and 2 clay

1.72

1.72

7.74

b)

Figure 5.1: (a) Single pile model, dimensions and layers of sand and clay. (b) Single pile

model, side view; top four finite elements are clay, middle four layers of finite elements are

sand and the bottom is all clay; interface zone around the concrete pile is also present.

(a) (b)

Figure 5.2: Plastic zone at the end of loading for case 1, layers of sand and clay: (a) side

view, (b) top view.
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(a) (b)

Figure 5.3: Plastic zone at the end of loading for case 2, single layer of clay: (a) side view,

(b) top view.
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Figure 5.4: (a) Moment, shear force, and pressure distribution (clay–sand profile); (b) p-y

curves (clay–sand profile).
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Figure 5.5: (a) Moment, shear force, and pressure distribution (clay profile); (b) p-y

curves (clay profile).
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5.2 Humboldt Bay Bridge Retrofit

The Humboldt Bay Bridge simulations comprise before and after retrofit analysis of one

of the foundation systems during a synthetic earthquake, provided by Dr. Abbas Abghari

of Caltrans.

Figure 5.6: Humboldt Bay Bridge plan of the SFS system.

The material models used for soil are a version of rotational kinematic hardening

Drucker–Prager (for dense send). The initial friction angle was at 37o. Figure 5.9 shows

a selected response (displacements and accelerations) for before and after the retrofit

models. This simulation was not intended to give definite answers on the actual retrofit,

so an in–depth study of the differences was not performed. The goal was to show that

OpenSees can indeed perform such simulations.
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Figure 5.7: Humboldt Bay Bridge: before and after the retrofit finite element models.
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Figure 5.8: Synthetic accelerations used in this analysis.
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Figure 5.9: Response for the before and after the retrofit SFS system.
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Chapter 6

Implementation Quality Control

One of the often neglected components of software development is the quality control

of the actual implementation. Beyond making sure that the models implemented do

perform as expected, one has to be confident that the implementation is free of bugs and

follows certain minimum standards. In order to test the quality of implementation for the

OpenSees finite element platform, a number of automatic tests have been implemented

that can be performed on a request, by developers, for example, or on a regular basis. To

this end, The following programming tools were used to test the implementation quality:

• Codewizard from Parasoft Inc.

• Insure from Parasoft Inc.

• g++ from GNU

• KCC from Kuck and Associates, Inc.

• pgCC from Portland Group Inc.

The Codewizard tool is used to perform C++ standard compliance tests. The Insure

tool is used to track various bugs and memory leaks. The set of compilers (g++, KCC,

and pgCC are used to clear most of the warnings and errors reported. This cross–compiler

testing ensures that the code is as close to the standard as possible and is portable.

Recent implementation quality control reports are available at

http://sokocalo.engr.ucdavis.edu/~jeremic/OpenSees/BugReports.
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