The OpenSees Examples Primer
Version 1.2
August 20, 2001
Frank McKenna and Michael Scott
Pacific Earthquake Engineering Research Center
University of California, Berkeley

Introduction

The objective of this primer is to provide new users of OpenSees (Open System for Earth-
quake Engineering Simulation) familiar structural engineering examples as a convenient
method for learning how to use the software. OpenSees is an object-oriented framework
for building models of structural and geotechnical systems, performing nonlinear analysis
with the model, and processing the response results. The goal for OpenSees is to support a
wide range of simulation applications in earthquake engineering. The details, however, on
how OpenSees accomplishes this goal are not particularly important for new users, who are
primarily interested in how to solve problems.

This primer examines a few typical examples. Most users will conduct a simulation with
a scripting language that has been extended to incorporate the features of OpenSees. As new
features are developed, such as material models, elements, solution methods, etc., the script-
ing language can be extended to include them. The scripting language is named Tcl/Tk,
and it has many features for dealing with variables, expressions, loops, data structures, in-
put/output, that are useful for doing a simulation. Some of the basic features of Tcl will be
illustrated in the examples.

Although users do not need to understand the object-oriented principles in the OpenSees
framework, some terminology helps in the description of the examples. We talk about
commands creating objects, which may be a specific material, element, analysis procedure,
etc. To conduct a simulation, the user creates objects for three main purposes:

1. Modeling: The user first creates a ModelBuilder object which defines the type of
model, and commands available for building the model. With a ModelBuilder defined,
the user then creates the Element, Node, LoadPattern and Constraint objects that
define the model. In this primer, the use of a basic ModelBuilder will be demonstrated.

2. Analysis: After defined the model, the next step is to create the Analysis object for
analyzing the model. This may be a simple static linear analysis or a transient non-
linear analysis. In OpenSees, an Analysis object is composed of several component
objects, which define how the analysis is performed. The component objects consist of
the following: SolutionAlgorithm, Integrator, ConstraintHandler, DOF_Numberer,
SystemOfEqn, Solver, and AnalysisModel. This approach provides a great deal of
flexibility in how an analysis is conducted.

3. Output Specification: Once the model and analysis have been defined, the user has
the option of specifying what is to be monitored during the analysis. This, for example,
could be the displacement history at a node or internal state of an element in a transient
analysis or the entire state of the model at each step in the solution procedure. Several
Recorder objects are created to store what the user wants to examine.

In the examples, Tcl scripts are used to create a model, analysis, and output specification.
The examples are (1) simple truss structure, (2) reinforced concrete portal frame, (3) two-
story multi-bay reinforced concrete frame, and (4) a three-dimensional frame. The examples
are not meant to be completely realistic, but they are representative of typical structures.
The analyses performed on these models consist of simple static analysis, pushover analysis
and transient analysis. An example of moment-curvature analysis is also performed on a
reinforced concrete section.

1 EXAMPLE 1 - Truss Example

The first example is a simple truss structure. The purpose of this example is to show
that model generation in OpenSees can resemble typical finite element analysis programs
with the definition of nodes, materials, elements, loads and constraints. The example also
demonstrates how an analysis object is ’built’ from component objects.

1.1 Example 1.1

This example is of a linear-elastic three bar truss, as shown in figure 1, subject to static
loads.

Files Required

1. Examplel.1.tcl

Model

The model consists of four nodes, three truss elements, a single load pattern with a nodal
load acting at node 4, and constraints at the three support nodes. Since the truss elements
have the same elastic material, a single Elastic material object is created.

¢5Okip
100kip
—_—

E=3000ksi
A =10im2

g (l) (3) A 2§5| "2

Figure 1: Example 1.1

Analysis

The model is linear, so we use a solution Algorithm of type Linear. Even though the
solution is linear, we have to select a procedure for applying the load, which is called an
Integrator. For this problem, a LoadControl integrator advances the solution. The equations
are formed using a banded system, so the System is BandSPD (banded, symmetric positive
definite). This is a good choice for most moderate size models. The equations have to be

3

numbered, so typically an RCM numberer object is used (for Reverse Cuthill-McKee). The
constraints are most easily represented with a Plain constraint handler.

Once all the components of an analysis are defined, the Analysis object itself is created.
For this problem a Static Analysis object is used.

Output Specification
When the analysis is complete the state of node 4 and all three elements will be printed
to the screen. Nothing is recorded for later use.

OpenSees Script
The Tcl script for the example is shown below. A comment is indicated by a # symbol.
In the comments below, the syntax for important commands are given.

OpenSees Example 1.1
OpenSees Primer

#

Units: kips, in, sec

Create ModelBuilder (with two-dimensions and 2 DOF/node)
model BasicBuilder -ndm 2 -ndf 2

Create nodes

Create nodes - command: node nodeld xCrd yCrd
node 1 0.0
node 2 144.0
node 3 168.0

0

0.
0.
0.
node 4 72. 6.

o O O O

9

Set the boundary conditions - command: fix nodeID xFix? yFix?
fix 111
fix 211
fix 311

Define materials for truss elements

Create Elastic material - command: uniaxialMaterial Elastic matID E
uniaxialMaterial Elastic 1 3000

Define elements

Create truss elements - command: element truss trussID nodel node2 A matID
element truss 1 1 4 10.0 1
element truss 2 2 4 5.0 1
element truss 3 3 4 5.0 1

Define loads
Create a Plain load pattern with a linear TimeSeries
pattern Plain 1 "Linear" {

Create the nodal load - command: load nodeID xForce yForce
load 4 100 -50

Create the solution algorithm, a Linear algorithm is created
algorithm Linear

Create the integration scheme, LoadControl using steps of 1.0
integrator LoadControl 1.0 1 1.0 1.0

Create the system of equation, a SPD using a band storage scheme
system BandSPD

Create the DOF numberer, the reverse Cuthill-McKee algorithm
numberer RCM

Create the constraint handler, a Plain handler for homogeneous constraints
constraints Plain

create the analysis object
analysis Static

Perform the analysis for 1 load step
analyze 1

Print the current state at node 4 and at all elements
print node 4
print element

Results

Node: 4
Coordinates : 72 96
commitDisps: 0.530093 -0.177894
unbalanced Load: 100 -50

Element: 1 type: Truss iNode: 1 jNode: 4 Area: 10 Total Mass: O
strain: 0.00146451 axial load: 43.9352
unbalanced load: -26.3611 -35.1482 26.3611 35.1482
Material: Elastic tag: 1
E: 3000 eta: O

Element: 2 type: Truss iNode: 2 jNode: 4 Area: 5 Total Mass: O
strain: -0.00383642 axial load: -57.5463
unbalanced load: -34.5278 46.0371 34.5278 -46.0371
Material: Elastic tag: 1
E: 3000 eta: O

Element: 3 type: Truss iNode: 3 jNode: 4 Area: 5 Total Mass: O
strain: -0.00368743 axial load: -55.3114
unbalanced load: -39.1111 39.1111 39.1111 -39.1111
Material: Elastic tag: 1
E: 3000 eta: O

For the node, displacements and loads are given. For the truss elements, the axial strain
and force are provided along with the resisting forces in the global coordinate system.

2 EXAMPLE 2 - Moment-Curvature Analysis of a
Reinforced Concrete Section

This next example covers the moment-curvature analysis of a reinforced concrete section.
The zero-length element with a fiber discretization of the cross section is used in the model.
In addition, Tcl language features such as variable and command substitution, expression
evaluation, and procedures are demonstrated.

2.1 Example 2.1

In this example, a moment-curvature analysis of the fiber section is undertaken. Figure 4
shows the fiber discretization for the section.

Files Required
1. Example2.1..tcl

2. MomentCurvature.tcl

Model
The model consists of two nodes and a ZeroLengthSection element. A depiction of the

element geometry is shown in figure 2. The drawing on the left of figure 2 shows an edge
view of the element where the local z-axis, as seen on the right side of the figure and in
figure 3, is coming out of the page. Node 1 is completely restrained, while the applied loads
act on node 2. A compressive axial load, P, of 180 kips is applied to the section during the
moment-curvature analysis.

y

T y

-
Concrete . .

/
z

Figure 2: Geometry of zero-length element

For the zero length element, a section discretized by concrete and steel is created to
represent the resultant behavior. UniaxialMaterial objects are created to define the fiber
stress-strain relationships: confined concrete in the column core, unconfined concrete in the
column cover, and reinforcing steel.

The dimensions of the fiber section are shown in figure 3. The section depth is 24 inches,
the width is 15 inches, and there are 1.5 inches of cover around the entire section. Strong
axis bending is about the section z-axis. In fact, the section z-axis is the strong axis of
bending for all fiber sections in planar problems. The section is separated into confined
and unconfined concrete regions, for which separate fiber discretizations will be generated.
Reinforcing steel bars will be placed around the boundary of the confined and unconfined
regions. The fiber discretization for the section is shown in figure 4.

! width = 15"
y | !
77 cover =7l.5"
Figure 3: Dimensions of RC section
(105, -6) (0,-6) (-105, -6)
y
(105, 6) ©,6) (-105, 6)

Figure 4: Fiber section discretization

Analysis

The section analysis is performed by the Tcl procedure MomentCurvature defined in the
file MomentCurvature.tcl. The arguments to the procedure are the tag of the section to be
analyzed, the axial load applied to the section, the maximum curvature, and the number of
displacement increments to reach the maximum curvature.

Output Specification

The output for the moment-curvature analysis will be the section forces and deformations,
stored in the file sectionl.out. In addition, an estimate of the section yield curvature is
printed to the screen.

OpenSees Script

In the script below variables, are set and can then be used with the syntax of $variable.
Expressions can be evaluated, although the Tcl syntax at first appears cumbersome. An
expression is given by an expr command enclosed in square brackets [|’s. Typically, the
result of an expression is then set to another variable. A simple example to add 2.0 to a
parameter is shown below:

set v 3.0
set sum [expr $v + 2.0]
puts $sum; # print the sum

Comments with # can appear on the same line as a command, but then the command
must be terminated with a semi-colon.

OpenSees Example 2.1
OpenSees Primer

#

Units: kips, in, sec
Define model builder

model BasicBuilder -ndm 2 -ndf 3

Define materials for nonlinear columns

__

CONCRETE tag f’c ecO f’cu ecu
Core concrete (confined)

uniaxialMaterial Concrete0O1l 1 -6.0 -0.004 -5.0 -0.014

Cover concrete (unconfined)

uniaxialMaterial Concrete01 2 -5.0 -0.002 0.0 -0.006
STEEL

Reinforcing steel

set fy 60.0; # Yield stress

set E 30000.0; # Young’s modulus
tag fy EO b
uniaxialMaterial Steel01l 3 $fy $E 0.01

Define cross-section for nonlinear columns

set some parameters
set colWidth 15
set colDepth 24

set cover 1.5
set As 0.60; # area of no. 7 bars

some variables derived from the parameters
set yl1 [expr $colDepth/2.0]
set z1 [expr $colWidth/2.0]

section Fiber 1 {
Create the concrete core fibers
patch rect 1 10 1 [expr $cover-$yl1] [expr $cover-$z1]

[expr $yl-$cover] [expr $zi1-$cover]

Create the concrete cover fibers (top, bottom, left, right)
patch rect 2 10 1 [expr -$y1] [expr $z1-$cover]

$y1 $z1
patch rect 2 10 1 [expr -$yi] [expr -$z1]
$y1 [expr $cover-$z1]
patch rect 2 2 1 [expr -$yi] [expr $cover-$z1]

[expr $cover-$yl] [expr $z1-$coverl]
patch rect 2 2 1 [expr $yl-$cover] [expr $cover-$z1]
$y1 [expr $z1-$cover]

Create the reinforcing fibers (left, middle, right)
layer straight 3 3 $As [expr $yl-$cover] [expr $zl1-$cover]
[expr $yl-$cover] [expr $cover-$z1]
layer straight 3 2 $As 0.0 [expr $zl1-$cover]
0.0 [expr $cover-$z1]
layer straight 3 3 $As [expr $cover-$yl1] [expr $zl-$cover]
[expr $cover-$yl1] [expr $cover-$z1]

Estimate yield curvature
(Assuming no axial load and only top and bottom steel)
set d [expr $colDepth-$cover] ;# d -- from cover to rebar

10

set epsy [expr $fy/$E] ;# steel yield strain
set Ky [expr $epsy/(0.7x$d)]

Print estimate to standard output
puts "Estimated yield curvature: $Ky"

Set axial load
set P -180

set mu 15; # Target ductility for analysis
set numIncr 100; # Number of analysis increments

Call the section analysis procedure
source MomentCurvature.tcl
MomentCurvature 1 $P [expr $Ky*$mu] $numIncr

The Tcl procedure to perform the moment-curvature analysis follows. In this procedure,
the nodes are defined to be at the same geometric location and the ZeroLengthSection
element is used. A single load step is performed for the axial load, then the integrator
is changed to DisplacementControl to impose nodal displacements, which map directly to
section deformations. A reference moment of 1.0 is defined in a Linear time series. For
this reference moment, the DisplacementControl integrator will determine the load factor
needed to apply the imposed displacement. A node recorder is defined to track the moment-
curvature results. The load factor is the moment, and the nodal rotation is in fact the
curvature of the element with zero thickness.

Arguments

secTag -- tag identifying section to be analyzed

axialload -- axial load applied to section (negative is compression)

maxK -- maximum curvature reached during analysis

numIncr -- number of increments used to reach maxK (default 100)

#

Sets up a recorder which writes moment-curvature results to file

section$secTag.out ... the moment is in column 1, and curvature in column 2

proc MomentCurvature {secTag axialload maxK {numIncr 100} } {
Define two nodes at (0,0)
node 1 0.0 0.0
node 2 0.0 0.0

Fix all degrees of freedom except axial and bending at node 2
fix1 111
fix 2010

Define element

tag ndl ndJ secTag
element zerolLengthSection 1 1 2 $secTag

11

Create recorder
recorder Node section$secTag.out disp -time -node 2 -dof 3

Define constant axial load
pattern Plain 1 "Constant" {

load 2 $axialload 0.0 0.0
}

Define analysis parameters
integrator LoadControl 0 1 0 O
system SparseGeneral -piv;
test NormUnbalance 1.0e-9 10
numberer Plain

constraints Plain

algorithm Newton

analysis Static

Do one analysis for constant axial load
analyze 1

Define reference moment

pattern Plain 2 "Linear" {
load 2 0.0 0.0 1.0

}

Compute curvature increment
set dK [expr $maxK/$numIncr]

Use displacement control at node 2 for section analysis
integrator DisplacementControl 2 3 $dK 1 $dK $dK

Do the section analysis
analyze $numIncr

12

Results
Estimated yield curvature: 0.000126984126984

The file sectionl.out contains for each committed state a line with the load factor and
the rotation at node 3. This can be used to plot the moment-curvature relationship as shown
in figure 5.

5000

4500

4000

3500

w
o
o
o

Moment (in*kip)
N
a1
o
o

2000

1500 .
1000 ,
500]
0 | | | | | | | | |
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8
Curvature (1/in) X107

Figure 5: Moment-curvature analysis of column section

13

3 EXAMPLE 3 - Portal Frame Examples

This next set of examples covers the nonlinear analysis of a reinforced concrete frame. The
nonlinear beam column element with a fiber discretization of the cross section is used in
the model. In addition, Tcl language features such as variable and command substitution,
expression evaluation, the if-then-else control structure, and procedures are demonstrated in
several elaborations of the example.

3.1 Example 3.1

This example is of a reinforced concrete portal frame, as shown in figure 6, subject to gravity
loads.

Files Required

1. Example3.1.tcl

Model

A nonlinear model of the portal frame shown in figure 6 is created. The model consists
of four nodes, two nonlinear beam-column elements, 1 and 2, to model the columns and an
elastic beam element, 3, to model the beam. For the column elements a section, identical to
the section used in Example 2, is created using steel and concrete fibers.

180kip ‘ 180kip
3
3 i ®)

_ m 4 ‘ 24" ‘
\ \
. T 15
12 1) @ A 15" | @ L °
Y |
- 7717»17% x o A sim

\ 30 |
\

Figure 6: Example 3.1

A single load pattern with a linear time series, two vertical nodal loads acting at nodes
3 and 4, and single point constraints to constrain nodes 1 and 2 are created.

Analysis

The model contains material non-linearities, so a solution Algorithm of type Newton
is used. The solution algorithm uses a ConvergenceTest which tests convergence of the
equilibrium solution with the norm of the displacement increment vector. For this nonlinear
problem, the gravity loads are applied incrementally until the full load is applied. To achieve

14

this, a LoadControl integrator which advances the solution with an increment of 0.1 at
each load step is used. The equations are formed using a banded storage scheme, so the
System is BandGeneral. The equations are numbered using an RCM (reverse Cuthill-McKee)
numberer. The constraints are enforced with a Plain constraint handler.

Once all the components of an analysis are defined, the Analysis object itself is created.
For this problem a Static Analysis object is used. To achieve the full gravity load, 10 load
steps are performed.

Output Specification
At end of analysis, the state at nodes 3 and 4 is output. The state of element 1 is also
output.

OpenSees Script

OpenSees Example 3.1
OpenSees Primer

#

Units: kips, in, sec

Create ModelBuilder (with two-dimensions and 3 DOF/node)
model basic -ndm 2 -ndf 3

Create nodes
Set parameters for overall model geometry
set width 360

set height 144

Create nodes

tag X Y
node 1 0.0 0.0
node 2 $width 0.0
node 3 0.0 $height
node 4 $width $height

Fix supports at base of columns
tag DX DY RZ
fix 1 1 1 1
fix 2 1 1 1

Define materials for nonlinear columns

CONCRETE tag f’c ecO0 f’cu ecu
Core concrete (confined)
uniaxialMaterial Concrete0O1 1 -6.0 -0.004 -5.0 -0.014

Cover concrete (unconfined)

uniaxialMaterial Concrete01l 2 -5.0 -0.002 0.0 -0.006
STEEL

Reinforcing steel

set fy 60.0; # Yield stress

set E 30000.0; # Young’s modulus

tag fy EO b

uniaxialMaterial Steel01 3 $fy $E 0.01

Define cross-section for nonlinear columns

set some parameters
set colWidth 15
set colDepth 24

set cover 1.5
set As 0.60; # area of no. 7 bars

some variables derived from the parameters
set y1 [expr $colDepth/2.0]
set zl [expr $colWidth/2.0]

section Fiber 1 {

Create the concrete core fibers
patch rect 1 10 1 [expr $cover-$yl] [expr $cover-$z1]
[expr $yl-$cover] [expr $z1-$cover]

Create the concrete cover fibers (top, bottom, left, right)
patch rect 2 10 1 [expr -$yl1] [expr $zl1-$cover]
$y1 $z1
patch rect 2 10 1 [expr -$yi] [expr -$z1]
$y1 [expr $cover-$z1]
patch rect 2 2 1 [expr -$y1] [expr $cover-$z1]
[expr $cover-$y1] [expr $zi1-$cover]
patch rect 2 2 1 [expr $yl-$cover] [expr $cover-$z1]
$y1l [expr $zi1-$cover]

Create the reinforcing fibers (left, middle, right)

layer straight 3 3 $As [expr $yl-$cover] [expr $zl1-$cover]
[expr $yl-$cover] [expr $cover-$z1]

16

layer straight 3 2 $As

layer straight 3 3 $As [expr $cover-$yl1] [expr
[expr $cover-$yl1] [expr

Define column elements

Geometry of column elements
tag
geomTransf Linear 1

0.0 [expr $z1-$cover]
0.0 [expr $cover-$z1]

Number of integration points along length of element

set np 5

Create the coulumns using Beam-column elements
tag ndI ndJ nsecs secID transfTag

element nonlinearBeamColumn 1 1 3
element nonlinearBeamColumn 2 2 4

Define beam elment

Geometry of column elements

tag

geomTransf Linear 2

Create the beam element

tag ndI ndJ

element elasticBeamColumn 3 3 4

Define gravity loads

Set some parameter

$np 1 1
$np 1 1

A E Iz
360 4030 8640

set P 180; # 10% of axial capacity of columns

Create a Plain load pattern with a Linear TimeSeries

pattern Plain 1 "Linear" {

Create nodal loads at nodes 3 & 4

nd FX FY MZ
load 3 0.0 [expr -$P] 0.0
load 4 0.0 [expr -$P] 0.0

17

$z1-$cover]
$cover-$z1]

transfTag
2

Create the system of equation, a banded general system
system BandGeneral

Create the constraint handler, the transformation method
constraints Transformation

Create the DOF numberer, a plain numbering scheme
numberer RCM

Create the convergence test, the norm of the residual with a tolerance of
le-12 and a max number of iterations of 10

test NormDispIncr 1.0e-12 10 3

Create the solution algorithm, a Newton-Raphson algorithm
algorithm Newton

Create the integration scheme, the LoadControl scheme using steps of 0.1
integrator LoadControl 0.1 1 0.1 0.1

Create the analysis object
analysis Static

initialize in case we need to do an initial stiffness iteration
initialize

Perform the gravity load analysis, requires 10 steps to reach the load level
analyze 10

18

Print out the state of nodes 3 and 4
print node 3 4

Print out the state of element 1
print element 1

Results

Node: 3
Coordinates : 0 144
commitDisps: -4.10875e-18 -0.0183736 4.97076e-20
unbalanced Load: 0 -180 0O

Node: 4
Coordinates : 360 144
commitDisps: -4.10842e-18 -0.0183736 4.92006e-20
unbalanced Load: 0 -180 0O

Element: 1 Type: NLBeamColumn2d Connected Nodes: 1 3
Number of Sections: 5 Mass density: O
End 1 Forces (P V M): 180 -1.75302e-31 4.9738e-14
End 2 Forces (P V M): -180 1.75302e-31 -4.9738e-14
Resisting Force: 1.47911e-31 180 4.9738e-14 -1.47911e-31 -180 -4.9738e-14

For the two nodes, displacements and loads are given. For the nonlinear beam-column
element, the element end forces in the local system are provided along with the resisting
forces in the global coordinate system.

19

3.2 Example 3.2

In this example the nonlinear reinforced concrete portal frame which has undergone the
gravity load analysis of Example 3.1 is now subjected to a pushover analysis.

Files Required
1. Example3.2.tcl

2. Example3.1.tcl

Model

After performing the gravity load analysis on the model, the time in the domain is reset
to 0.0 and the current value of all loads acting are held constant. A new load pattern with a
linear time series and horizontal loads acting at nodes 3 and 4 is then added to the model.

Analysis

The static analysis used to perform the gravity load analysis is modified to take a new
DisplacementControl integrator. At each new step in the analysis the integrator will deter-
mine the load increment necessary to increment the horizontal displacement at node 3 by
0.1 in. 60 analysis steps are performed in this new analysis.

Output Specification

For this analysis the nodal displacements at nodes 3 and 4 will be stored in the file
nodePushover.out for post-processing. In addition, the end forces in the local coordinate
system for elements 1 and 2 will be stored in the file elePushover.out. At the end of the
analysis, the state of node 3 is printed to the screen.

OpenSees Script

OpenSees Example 3.2
OpenSees Primer

#

Units: kips, in, sec

Do operations of Example3.1 by sourcing in the tcl file
source Example3.1.tcl
puts ‘‘Gravity load analysis completed’’

Set the gravity loads to be constant & reset the time in the domain
loadConst -time 0.0

20

Set some parameters
set H 10.0; # Reference lateral load

Set lateral load pattern with a Linear TimeSeries
pattern Plain 2 "Linear" {

Create nodal loads at nodes 3 & 4
nd FX FY MZ

load 3 $H 0.0 0.0

load 4 $H 0.0 0.0

Set some parameters
set dU 0.1; # Displacement increment

Change the integration scheme to be displacement control
node dof init Jd min max
integrator DisplacementControl 3 1 $dU 1 $dU $dU

Start of recorder generation

21

Create a recorder to monitor nodal displacements
recorder Node node32.out disp -time -node 3 4 -dof 1 2 3

Create a recorder to monitor element forces in columns
recorder Element 1 2 -time -file ele32.out localForce

Set some parameters
set maxU 6.0; # Max displacement
set numSteps [expr int($maxU/$dU)]

Perform the analysis
analyze $numSteps

puts ‘‘Pushover analysis completed’’

Print the state at node 3
print node 3

22

Results

Gravity load analysis completed
Setting time in domain to be : 0.0

Pushover analysis completed

Node: 3
Coordinates : O 144
commitDisps: 6 0.488625 -0.00851377
unbalanced Load: 71.8819 -180 O

In addition to what is displayed on the screen, the file node32.out and ele32.out have
been created by the script. Each line of node32.out contains the time, DX, DY and RZ for
node 3 and DX, DY and RZ for node 4 at the end of an iteration. Each line of eleForce.out
contains the time, and the element end forces in the local coordinate system. A plot of the
load-displacement relationship at node 3 is shown in figure 7.

160

Total Lateral Load (kip)

1 1 1 1
1 2 3 4 5 6
Lateral Displacement (in)

20 .
0

Figure 7: Load displacement curve for node 3

23

3.3 Example 3.3

In this example the reinforced concrete portal frame which has undergone the gravity load
analysis of Example 3.1 is now subjected to a uniform earthquake excitation.

Files Required
1. Example3.3.tcl

2. Example3.1.tcl
3. ReadSMDFile.tcl

Model

After performing the gravity load analysis, the time in the domain is reset to 0.0 and the
current value of all active loads is set to constant. Mass terms are added to nodes 3 and 4.
A new uniform excitation load pattern is created. The excitation acts in the horizontal di-
rection and reads the acceleration record and time interval from the file ARL360.g3. The file
ARL360.g3 is created from the PEER Strong Motion Database (http://peer.berkeley.edu/smcat/)
record ARL360.at2 using the Tcl procedure ReadSMDFile contained in the file ReadSMD-
File.tcl.

Analysis

The static analysis object and its components are first deleted so that a new transient
analysis object can be created.

A new solution Algorithm of type Newton is then created. The solution algorithm uses a
ConvergenceTest which tests convergence on the norm of the displacement increment vector.
The integrator for this analysis will be of type Newmark with a v of 0.25 and a § of 0.5.
The integrator will add some stiffness proportional damping to the system, the damping
term will be based on the last committed stifness of the elements, i.e. C = a.K .ommit
with a, = 0.000625. The equations are formed using a banded storage scheme, so the
System is BandGeneral. The equations are numbered using an RCM (reverse Cuthill-McKee)
numberer. The constraints are enforced with a Plain constraint handler.

Once all the components of an analysis are defined, the Analysis object itself is created.
For this problem a Transient Analysis object is used. 2000 time steps are performed with a
time step of 0.01.

In addition to the transient analysis, two eigenvalue analysis are performed on the model.
The first is performed after the gravity analysis and the second after the transient analysis.

Output Specification

For this analysis the nodal displacenments at Nodes 3 and 4 will be stored in the file
nodeTransient.out for post-processing. In addition the section forces and deformations for
the section at the base of column 1 will also be stored in two seperate files. The results of
the eigenvalue analysis will be displayed on the screen.

OpenSees Script

24

OpenSees Example 3.3
OpenSees Primer
#
#

Units: kips, in, sec

Do operations of Example3.1 by sourcing in the tcl file
source Example3.l.tcl
puts ¢‘Gravity load analysis completed’’

Set the gravity loads to be constant & reset the time in the domain
loadConst -time 0.0

Define nodal mass in terms of axial load on columns
set g 386.4
set m [expr $P/$gl; # expr command to evaluate an expression

tag MX MY RZ
mass 3 $m $m 0

mass 4 $m $m 0

Define dynamic loads
Set some parameters
set outFile ARL360.g3

set accelSeries "Path -filePath $outFile -dt $dt -factor $g"

Source in TCL proc to read a PEER Strong Motion Database record
source ReadSMDFile.tcl

Perform the conversion from SMD record to OpenSees record and obtain dt
inFile outFile dt
ReadSMDFile ARL360.at2 $outFile dt

Create UniformExcitation load pattern

25

tag dir
pattern UniformExcitation 2 1 =-accel $accelSeries

Delete the old analysis and all its component objects
wipeAnalysis

Create the convergence test, the norm of the residual with a tolerance of
le-12 and a max number of iterations of 10

test NormDispIncr 1.0e-12 10

Create the solution algorithm, a Newton-Raphson algorithm
algorithm Newton

Create the integration scheme, Newmark with gamma = 0.5 and beta = 0.25
integrator Newmark 0.5 0.25 0.0 0.0 0.0 0.000625

Create the system of equation, a banded general storage scheme
system BandGeneral

Create the constraint handler, a plain handler as homogeneous boundary conditions
constraints Plain

Create the DOF numberer, the reverse Cuthill-McKee algorithm
numberer RCM

Create the analysis object
analysis Transient

Create a recorder to monitor nodal displacements
recorder Node nodeTransient.out disp -time -node 3 -dof 1 2 3

26

Create recorders to monitor section forces and deformations

at the base of the left column

recorder Element 1 -time -file elelsecForce.out section 1 force
recorder Element 1 -time -file elelsecDef.out section 1 deformation

Perform an eigenvalue analysis
puts [eigen 2]

Perform the transient analysis
N dt
set ok [analyze 2000 0.01]

if the analysis fails at a step we try an
initial stiffness iteration for that step
and then go back to the current stifness for the rest

if {$ok !'= 0} {
set tFinal [expr 2000 * 0.01]
set tCurrent [getTime]
set ok O
while {$ok == 0 && $tCurrent < $tFinall} {

set ok [analyze 1 .01]

if the analysis fails try initial tangent iteration
if {$ok != 0} {
puts "regular newton failed .. lets try an initail stiffmess for this step"
test NormDispIncr 1.0e-12 100 1
algorithm Newton -initial
set ok [analyze 1 .01]
if {$ok == 0} {puts "that worked .. back to regular newton"}
test NormDispIncr 1.0e-12 10
algorithm Newton

set tCurrent [getTimel

27

if {$ok == 0} {

puts "Transient analysis completed succesfully";
} else {

puts "Transient analysis completed failed";

Perform an eigenvalue analysis
puts [eigen 2]

Print state of node 3
print node 3

Results

Gravity load analysis completed
Setting time in domain to be : 0.0
Eigenvalues: 269.542 17507.1

regular newton failed .. lets try an initail stiffness for this step
that worked .. back to regular newton

Transient analysis completed succesfully
1.669721e+02 1.734707e+04

Node: 3

Coordinates : 0 144

commitDisps: -0.101087 -0.0220163 0.000563238
Velocities : —1.5214 0.022985 0.00963654
commitAccels: 4.11459 0.263923 -97.8123
unbalanced Load: -3.9475 -180 O
Mass :

0.465839 0 0

0 0.465839 0

000

Eigenvectors:
-1.03582 -0.979573
0.0130843 0.299073
0.00666293 0.00498144

The two eigenvalues for the eigenvalue analysis are printed to the screen. The state of
node 3 at the end of the analysis is also printed. The information contains the last committed
displacements, velocities and accelerations at the node, the unbalanced nodal forces and the
nodal masses. In addition, the eigenvector components of the eigenvector pertaining to the
node 3 is also displayed.

28

In addition to the contents displayed on the screen, three files have been created. Each
line of nodeTransient.out contains the domain time, and DX, DY and RZ for node 3. Plotting
the first and second columns of this file the lateral displacement versus time for node 3 can
be obtained as shown in figure 8. Each line of the files elelsecForce.out and elelsecDef.out
contain the domain time and the forces and deformations for section 1 (the base section) of
element 1. These can be used to generate the moment-curvature time history of the base
section of column 1 as shown in figure 9.

15F N

o
6]
T
|

Laterial Displacement (in)
o

|
=}
ol
T
|

-1.51 N

1
0 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 8: Lateral displacement at node 3

29

Moment (in*kip)

6000

Element 1 Base Section

4000

2000

-2000

-4000

—-6000
-1.5

|
-1 -0.5 0 0.5 1 1.5
Curvature (1/in)

Figure 9: Column section moment-curvature results

30

x 10

4 EXAMPLE 4 - Multibay Two Story Frame Example

In this next example the use of variable substitution and the Tcl loop control structure for
building models is demonstrated.

4.1 Example 4.1

This example is of a reinforced concrete multibay two story frame, as shown in figure 10,
subject to gravity loads.

Files Required

1. Exampled.1.tcl

Model

A model of the frame shown in figure 10 is created. The number of objects in the model
is dependent on the parameter numBay. The (numBay +1) % 3) nodes are created, one
column line at a time, with the node at the base of the columns fixed in all directions. Three
materials are constructed, one for the concrete core, one for the concrete cover and one for
the reinforcement steel. Three fiber discretized sections are then built, one for the exterior
columns, one for the interior columns and one for the girders. Each of the members in the
frame is modelled using nonlinear beam-column elements with 4 (nP) integration points and
a linear geometric transformation object.

P2

.

ol ! ' ;o

15

777’77_ 777”77_ 777’77_ 777’77_ 1
| 24 | 24 | (numBay-2) *24' |
I I I |

Figure 10: Example 4.1

For gravity loads, a single load pattern with a linear time series and two vertical nodal
loads acting at the first and second floor nodes of each column line is used. The load at the
lower level is twice that of the upper level and the load on the interior columns is twice that
of the exterior columns.

31

For the lateral load analysis, a second load pattern with a linear time series is introduced
after the gravity load analysis. Associated with this load pattern are two nodal loads acting
on nodes 2 and 3, with the load level at node 3 twice that acting at node 2.

Analysis

A solution Algorithm of type Newton is created. The solution algorithm uses a Conver-
genceTest based on the norm of the displacement increment vector. The integrator for the
analysis will be LoadControl with a load step increment of 0.1. The storage for the system
of equations is BandGeneral. The equations are numbered using an RCM (reverse Cuthill-
McKee) numberer. The constraints are enforced with a Plain constraint handler. Once the
components of the analysis have been defined, the analysis object is then created. For this
problem a Static analysis object is used and 10 steps are performed to load the model with
the desired gravity load.

After the gravity load analysis has been performed, the gravity loads are set to constant
and the time in the domain is reset to 0.0. A new LoadControl integrator is now added. The
new LoadControl integrator has an initial load step of 1.0, but this can vary between 0.02
and 2.0 depending on the number of iterations required to achieve convergence at each load
step. 100 steps are then performed.

Output Specification

For the pushover analysis the lateral displacements at nodes 2 and 3 will be stored in
the file Node4l.out for post-processing. In addition, if the variable displayMode is set to
“displayON” the load-displacement curve for horizontal displacements at node 3 will be
displayed in a window on the user’s terminal.

OpenSees Script

OpenSees Example 4.1
OpenSees Primer
#

Units: kips, in, sec

Parameter identifying the number of bays

set numBay 3

Start of model gemeration

Create ModelBuilder (with two-dimensions and 3 DOF/node)
model BasicBuilder —-ndm 2 -ndf 3

Create nodes

Set parameters for overall model geometry

32

set bayWidth 288
set nodelD 1

Define nodes
for {set i 0} {$i <= $numBay} {incr i 1} {
set xDim [expr $i * $bayWidth]

tag X Y
node $nodelD $xDim O

node [expr $nodeID+1] $xDim 180
node [expr $nodeID+2] $xDim 324

incr nodeID 3

Fix supports at base of columns
for {set i 0} {$i <= $numBay} {incr i 1} {
node DX DY RZ

fix [expr $i*3+1] 1 1 1

Define materials for nonlinear columns

CONCRETE

Cover concrete

tag -f’c -epsco -f’cu -epscu
uniaxialMaterial ConcreteO1 1 -4.00 -0.002 0.0 -0.006

Core concrete
uniaxialMaterial Concrete0O1 2 -5.20 -0.005 -4.70 -0.02

STEEL

Reinforcing steel

tag fy EO b
uniaxialMaterial SteelO01 3 60 30000 0.02

Define cross-section for nonlinear columns

Interior column section - Section A

section Fiber 1 {
mat nfIJ nfJK yI =zI yJ zJ yK zK yL zL
patch quadr 2 1 12 -11.5 10 -11.5 -10 11.5 -10 11.5 10
patch quadr 1 1 14 -13.5 -10 -13.5 -12 13.5 -12 13.5 -10
patch quadr 1 1 14 -13.5 12 -13.5 10 13.5 10 13.5 12

33

patch quadr 1 1 2 -13.5 10 -13.5 -10 -11.5 -10 -11.5 10
patch quadr 1 1 2 11.5 10 11.5 -10 13.5 -10 13.5 10

mat nBars area yI zI yF zF
layer straight 3 6 1.56 -10.5 9 -10.5 -9
layer straight 3 6 1.56 10.5 9 10.5 -9

Exterior column section - Section B
section Fiber 2 {
patch quadr
patch quadr
patch quadr

110 -10 10 -10 -10 10 -10 10 10
112 -12 -10 -12 -12 12 -12 12 -10
112 -12 12 -12 10 12 10 12 12
1
1

= o N

patch quadr 2 -12 10 -12 -10 -10 -10 -10 10
patch quadr 1 2 10 10 10 -10 12 -10 12 10
layer straight 3 6 0.79 -9 9 -9 -9
layer straight 3 6 0.79 9 9 9 -9

Girder section - Section C

section Fiber 3 {
patch quadr 1 1 12 -12 9 -12 -9 12 -9 12 9
layer straight 3 4 1.00 -9 9 -9 -9
layer straight 3 4 1.00 9 9 9 -9

Define column elements

Number of integration points
set nP 4

Geometric transformation
geomTransf Linear 1

set beamID 1

Define elements

for {set i 0} {$i <= $numBay} {incr i 1} {
set some parameters
set iNode [expr $ix*3 + 1]
set jNode [expr $ix3 + 2]

for {set j 1} {$j < 3} {incr j 1} {

add the column element (secId == 2 if external, 1 if internal column)

if {$i == 0} {

34

element nonlinearBeamColumn $beamID $iNode $jNode $nP
} elseif {$i == $numBay} {

element nonlinearBeamColumn $beamID $iNode $jNode $nP
} else {

element nonlinearBeamColumn $beamID $iNode $jNode $nP

increment the parameters
incr iNode 1
incr jNode 1
incr beamID 1

Define beam elements

Number of integration points
set nP 4

Geometric transformation
geomTransf Linear 2

Define elements

for {set j 1} {$j < 3} {incr j 1} {
set some parameters
set iNode [expr $j + 1]
set jNode [expr $iNode + 3]

for {set i 1} {$i <= $numBay} {incr i 1} {
element nonlinearBeamColumn $beamID $iNode $jNode $nP

increment the parameters
incr iNode 3

incr jNode 3
incr beamlID 1

Define gravity loads

Constant gravity load
set P -192

Create a Plain load pattern with a Linear TimeSeries

35

2

2

1

1

1

pattern Plain 1 Linear {
Create nodal loads at nodes
for {set i 0} {$i <= $numBay} {incr i 1} {

set some parameters
set nodel [expr $i*3 + 2]
set node2 [expr $nodel + 1]

if {$i == 0} {
load $nodel 0.0 $P 0.0
load $node2 0.0 [expr $P/2.0] 0.0
} elseif {$i == $numBay} {

load $nodel 0.0 $p 0.0
load $node2 0.0 [expr $P/2.0] 0.0
} else {
load $nodel 0.0 [expr 2.0*$P] 0.0
load $node2 0.0 $p 0.0
}
}
X
¥ -—-———— e ——
End of model generation
¥ -—-——— e ——.
__
Start of analysis generation for gravity analysis
- ——

Create the convergence test, the norm of the residual with a tolerance of
le-12 and a max number of iterations of 10
test NormDispIncr 1.0e-8 10 O

Create the solution algorithm, a Newton-Raphson algorithm
algorithm Newton

Create the integration scheme, the LoadControl scheme using steps of 0.1
integrator LoadControl 0.1 1 0.1 0.1

Create the system of equation, a SPD using a profile storage scheme
system BandGeneral

Create the DOF numberer, the reverse Cuthill-McKee algorithm
numberer RCM

Create the constraint handler, the transformation method

36

constraints Plain

Create the analysis object
analysis Static

perform the gravity load analysis, requires 10 steps to reach the load level
analyze 10

set gravity loads to be const and set pseudo time to be 0.0
for start of lateral load analysis
loadConst -time 0.0

Reference lateral load for pushover analysis
set H 10

Reference lateral loads
Create a Plain load pattern with a Linear TimeSeries
pattern Plain 2 Linear {

load 2 [expr $H/2.0] 0.0 0.0
load 3 $H 0.0 0.0
3

Start of recorder generation

Create a recorder which writes to Node.out and prints
the current load factor (pseudo-time) and dof 1 displacements at node 2 & 3
recorder Node Node4l.out disp -time -node 2 3 -dof 1

Source in some commands to display the model

37

comment out one of lines
set displayMode '"displayON"
#set displayMode "displayOFF"

if {$displayMode == "displayON"} {
a window to plot the nodal displacements versus load for node 3
recorder plot Node41l.out Node3Xdisp 10 340 300 300 -columns 3 1

Change the integrator to take a min and max load increment
integrator LoadControl 1.0 4 0.02 2.0

Perform the analysis

Perform the pushover analysis

Set some parameters

set maxU 15.0; # Max displacement
set controlDisp 0.0;

set ok 0;

while {$controlDisp < $maxU && $ok == 0} {
set ok [analyze 1]
set controlDisp [nodeDisp 3 1]

if {$ok != 0} {
puts "... trying an initial tangent iteration with Newton"
test NormDispIncr 1.0e-8 4000 O
algorithm Newton -initial
set ok [analyze 1]
test NormDispIncr 1.0e-8 10 O
algorithm Newton

}

if {$ok != 0} {
puts "... that failed .. trying Broyden"
test NormDispIncr 1.0e-8 10 1
algorithm Broyden
set ok [analyze 1]

38

test NormDispIncr 1.0e-8 10 O
algorithm Newton

}

if {$ok != 0} {
puts "... that failed .. trying an initial tangent with Broyden"
test NormDispIncr 1.0e-8 10 1
algorithm Broyden 20 -initial
set ok [analyze 1]
test NormDispIncr 1.0e-8 10 O
algorithm Newton

}
X
if {$ok != 0} {
puts "Pushover analysis FAILED"
} else {
puts "Pushover analysis completed SUCCESSFULLY"
}
Results

The output consists of the file Node41.out containing a line for each step of the lateral
load analysis. Each line contains the load factor, the lateral displacements at nodes 2 and
3. A plot of the load-displacement curve for the frame is given in figure 11.

39

Total Lateral Load (kip)

500

450

400

350

300

250

200

150

100

50

Load-Displacement of Two Story Frame

Displacement (in)

Figure 11: Pushover curve for two-story three-bay frame

40

5 EXAMPLE 5 - Three-Dimensional Rigid Frame

5.1 Example 5.1

This example is of a three-dimensional reinforced concrete rigid frame, as shown in figure 12,
subjected to bi-directional earthquake ground motion.

Files Required
1. Example5.1.tcl

2. RCsection.tcl
3. tabasFN.txt

4. tabasFP.txt

Model

A model of the rigid frame shown in figure 12 is created. The model consists of three
stories and one bay in each direction. Rigid diaphragm multi-point constraints are used to
enforce the rigid in-plane stiffness assumption for the floors. Gravity loads are applied to the
structure and the 1978 Tabas acceleration records are the uniform earthquake excitations.

Nonlinear beam column elements are used for all members in the structure. The beam
sections are elastic while the column sections are discretized by fibers of concrete and steel.
Elastic beam column elements may have been used for the beam members; but, it is useful to
see that section models other than fiber sections may be used in the nonlinear beam column
element.

Analysis

A solution Algorithm of type Newton is used for the nonlinear problem. The solution
algorithm uses a ConvergenceTest which tests convergence on the norm of the energy incre-
ment vector. The integrator for this analysis will be of type Newmark with a v of 0.25 and
a [of 0.5. Due to the presence of the multi-point constraints, a Transformation constraint
handler is used. The equations are formed using a sparse storage scheme which will perform
pivoting during the equation solving, so the System is SparseGeneral. As SparseGeneral will
perform it’s own internal numbering of the equations, a Plain numberer is used which simply
assigns equation numbers to the degrees-of-freedom.

Once all the components of an analysis are defined, the Analysis object itself is created.
For this problem a Transient Analysis object is used. 2000 steps are performed with a time
step of 0.01.

Output Specification
The nodal displacements at nodes 9, 14, and 19 (the master nodes for the rigid di-

aphragms) will be stored in the file node51.out for post-processing.

OpenSees Script

41

(15,

(16)

7 (18) ./

12

| @)

12

| ®

12

®)

OpenSees Example 5.1
OpenSees Primer

#

Units: kips, in, sec

- (19) ./.
(7)
; (1)
W (1) ./'
(12)
‘ ®
H© ./'
: @
@
Q77T

Figure 12: Example 5.1

Create ModelBuilder with 3 dimensions and 6 DOF/node

model BasicBuilder -ndm 3 -ndf 6

Define geometry

Set parameters for model geometry

Story height

Bay width in Y-direction
Bay width in X-direction

set h 144.0;
set by 240.0;
set bx 240.0;

Create nodes
tag X

node 1 [expr -$bx/2] [expr $by/2]

42

node 2 [expr $bx/2] [expr $by/2]

node 3 [expr $bx/2] [expr -$by/2]
node 4 [expr -$bx/2] [expr -$by/2]
node 5 [expr -$bx/2] [expr $by/2]
node 6 [expr $bx/2] [expr $by/2]
node 7 [expr $bx/2] [expr -$by/2]
node 8 [expr -$bx/2] [expr -$by/2]

o

$h
$h
$h
$h

node 10 [expr -$bx/2] [expr $by/2] [expr 2*$hl]
node 11 [expr $bx/2] [expr $by/2] [expr 2*$h]

node 12 [expr $bx/2] [expr -$by/2] [expr 2*$
node 13 [expr -$bx/2] [expr -$by/2] [expr 2x*$

node 15 [expr -$bx/2] [expr $by/2] [expr 3*$
node 16 [expr $bx/2] [expr $by/2] [expr 3x*$
node 17 [expr $bx/2] [expr -$by/2] [expr 3*$
node 18 [expr -$bx/2] [expr -$by/2] [expr 3x*$

Master nodes for rigid diaphragm
tag X Y Z
node 9 00 $h
node 14 0 O [expr 2*$h]
node 19 0 0 [expr 3*$h]

Set base constraints

tag DX DY DZ RX RY RZ

fix 1 11 1 1 1 1

fix 2

fix 3
4

11 1 1 1 1
11 1 1 1 1
fix 11 1 1 1 1

h]
h]

h]
h]
h]
h]

Define rigid diaphragm multi-point constraints

normalDir master slaves

rigidDiaphragm 3 9 5 6 7 8
rigidDiaphragm 3 14 10 11 12 13
rigidDiaphragm 3 19 15 16 17 18

Constraints for rigid diaphragm master nodes
tag DX DY DZ RX RY RZ
fix 9 0 0 1 1 1 O
fix14 0 0 1 1 1 0
fix19 0 0 1 1 1 0

Define materials for nonlinear columns

CONCRETE

43

Core concrete (confined)
tag f’c epscO f’cu epscu
uniaxialMaterial Concrete0O1 1 -5.0 -0.005 -3.5 -0.02

Cover concrete (unconfined)
set fc 4.0
uniaxialMaterial Concrete0O1 2 -$fc -0.002 0.0 -0.006

STEEL

Reinforcing steel

tag fy E b
uniaxialMaterial SteelO01 3 60 30000 0.02

Column width
set d 18.0

Source in a procedure for generating an RC fiber section
source RCsection.tcl

Call the procedure to generate the column section
id h b cover core cover steel nBars area nfCoreY nfCoreZ nfCoverY nfCoverZ
RCsection 1 $d $d 2.5 1 2 3 3 0.79 8 8 10 10

Concrete elastic stiffness
set E [expr 57000.0*sqrt ($£c*x1000)/1000] ;

Column torsional stiffness
set GJ 1.0el10;

Linear elastic torsion for the column
uniaxialMaterial Elastic 10 $GJ

Attach torsion to the RC column section

tag uniTag uniCode secTag
section Aggregator 2 10 T -section 1
set colSec 2

Define column elements

#set PDelta "ON"
set PDelta "OFF"

Geometric transformation for columns

if {$PDelta == "ON"} {
tag vecxz
geomTransf LinearWithPDelta 1 1 00
} else {

44

geomTransf Linear 1 100

}

Number of column integration points (sections)
set np 4

Create the nonlinear column elements
tag ndI ndJ nPts secID transf

element nonlinearBeamColumn 1 1 5 $np $colSec 1
element nonlinearBeamColumn 2 2 6 $np $colSec 1
element nonlinearBeamColumn 3 3 7 $np $colSec 1
element nonlinearBeamColumn 4 4 8 $np $colSec 1
element nonlinearBeamColumn 5 5 10 $np $colSec 1
element nonlinearBeamColumn 6 6 11 $np $colSec 1
element nonlinearBeamColumn 7 7 12 $np $colSec 1
element nonlinearBeamColumn 8 8 13 $np $colSec 1
element nonlinearBeamColumn 9 10 15 $np $colSec 1
element nonlinearBeamColumn 10 11 16 $np $colSec 1
element nonlinearBeamColumn 11 12 17 $np $colSec 1
element nonlinearBeamColumn 12 13 18 $np $colSec 1

Define beam elements

Define material properties for elastic beams
Using beam depth of 24 and width of 18

set Abeam [expr 18%24];

"Cracked" second moments of area

set Ibeamzz [expr 0.5%1.0/12*18*pow(24,3)];
set Ibeamyy [expr 0.5%1.0/12*24xpow(18,3)];

Define elastic section for beams

tag E A Iz Iy G J
section Elastic 3 $E $Abeam $Ibeamzz $Ibeamyy $GJ 1.0
set beamSec 3

Geometric transformation for beams
tag vecxz

geomTransf Linear 2 11 0

Number of beam integration points (sections)
set np 3

Create the beam elements

45

tag ndI ndJ nPts secID transf
element nonlinearBeamColumn 13 5 6 $np $beamSec 2

element nonlinearBeamColumn 14 6 7 $np $beamSec 2
element nonlinearBeamColumn 15 7 8 $np $beamSec 2
element nonlinearBeamColumn 16 8 5 $np $beamSec 2
element nonlinearBeamColumn 17 10 11 $np $beamSec 2
element nonlinearBeamColumn 18 11 12 $np $beamSec 2
element nonlinearBeamColumn 19 12 13 $np $beamSec 2
element nonlinearBeamColumn 20 13 10 $np $beamSec 2
element nonlinearBeamColumn 21 15 16 $np $beamSec 2
element nonlinearBeamColumn 22 16 17 $np $beamSec 2
element nonlinearBeamColumn 23 17 18 $np $beamSec 2
element nonlinearBeamColumn 24 18 15 $np $beamSec 2

Define gravity loads

Gravity load applied at each corner node
10% of column capacity
set p [expr 0.1x$fc*x$h*$h]

Mass lumped at master nodes
set g 386.4; # Gravitational constant
set m [expr (4*$p)/$gl

Rotary inertia of floor about master node
set i [expr $m*($bx*$bx+$by*$by)/12.0]

Set mass at the master nodes
tag MX MY MZ RX RY RZ
mass 9 mm O O O $i
mass 14 $m $m O O O $i
mass 19 $m $m O O O $i

Define gravity loads
pattern Plain 1 Constant {
foreach node {6 6 7 8 10 11 12 13 15 16 17 18} {
load $node 0.0 0.0 -$p 0.0 0.0 0.0

Define earthquake excitation
Set up the acceleration records for Tabas fault normal and fault parallel

set tabasFN "Path -filePath tabasFN.txt -dt 0.02 -factor $g"
set tabasFP "Path -filePath tabasFP.txt -dt 0.02 -factor $g"

46

Define the excitation using the Tabas ground motion records
tag dir accel series args
pattern UniformExcitation 2 1 -accel $tabasFN
pattern UniformExcitation 3 2 -accel $tabasFP

Create the convergence test
tol maxIter printFlag
test EnergyIncr 1.0e-8 20 3

Create the solution algorithm
algorithm Newton

Create the system of equation storage and solver
system SparseGeneral -piv

Create the constraint handler
constraints Transformation

Create the time integration scheme
gamma beta

integrator Newmark 0.5 0.25

Create the DOF numberer
numberer RCM

Create the transient analysis
analysis Transient

47

Record DOF 1 and 2 displacements at nodes 9, 14, and 19
recorder Node nodebl.out disp -time -node 9 14 19 -dof 1 2

Analysis duration of 20 seconds
numSteps dt
analyze 2000 0.01

Results

The results consist of the file node.out, which contains a line for every time step. Each
line contains the time and the horizontal and vertical displacements at the diaphragm master
nodes (9, 14 and 19) i.e. time Dx9 Dy9 Dx14 Dy14 Dx19 Dy19. The horizontal displacement
time history of the first floor diaphragm node 9 is shown in figure 13. Notice the increase in
period after about 10 seconds of earthquake excitation, when the large pulse in the ground
motion propogates through the structure. The displacement profile over the three stories
shows a soft-story mechanism has formed in the first floor columns. The numerical solution
converges even though the drift is & 20%. The inclusion of P-Delta effects shows structural
collapse under such large drifts.

48

30

Displacement (in)

20

50 —— Linear B
P-A
—60F 4
-70 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 13: Node 9 displacement time history

49

6 EXAMPLE 6 - Simply Supported Beam

In this example a simple problem in solid dynamics is considered. The structure is a simply
supported beam modelled with two dimensional solid elements.

Files Required

1. Example6.1.tcl

Model

For two dimensional analysis, a typical solid element is defined as a volume in two dimen-
sional space. Each node of the analysis has two displacement degrees of freedom. Thus the
model is defined with ndm := 2 and ndf := 2. pp For this model, a mesh is generated using
the “block2D” command. The number of nodes in the local x-direction of the block is nx
and the number of nodes in the local y-direction of the block is ny. The block2D generation
nodes {1,2,3,4} are prescribed to define the two dimensional domain of the beam, which is
of size 40 x 10.

Three possible quadrilateral elements can be used for the analysis. These may be created
using the terms “bbarQuad,” “enhancedQuad” or “quad.” This is a plane strain problem.
An elastic isotropic material is used.

For initial gravity load analysis, a single load pattern with a linear time series and two
vertical nodal loads are used.

Analysis

A solution algorithm of type Newton is used for the problem. The solution algorithm
uses a ConvergenceTest which tests convergence on the norm of the energy increment vector.
Ten static load steps are performed.

Subsequent to the static analysis, the wipeAnalysis and remove loadPatern commands
are used to remove the nodal loads and create a new analysis. The nodal displacements have
not changed. However, with the external loads removed the structure is no longer in static
equilibrium.

The integrator for the dynamic analysis if of type GeneralizedMidpoint with « := 0.5.
This choice is uconditionally stable and energy conserving for linear problems. Addition-
ally, this integrator conserves linear and angular momentum for both linear and non-linear
problems. The dynamic analysis is performed using 100 time increments with a time step
At := 0.50.

OpenSees Script

Create ModelBuilder with 3 dimensions and 6 DOF/node
model basic -ndm 2 -ndf 2

20

create the material
nDMaterial ElasticIsotropic 1 1000 0.25 6.75

Define geometry

define some parameters

set
set
set

Quad quad
Quad bbarQuad
Quad enhancedQuad

if {$Quad == "enhancedQuad" } {
set eleArgs "PlaneStrain2D 1"

}

if {$Quad == "quad" } {
set eleArgs "1 PlaneStrain2D 1"

}

if {$Quad == "bbarQuad" } {
set eleArgs "1"

}

set
set
set
set
set

nx 8; # NOTE: nx MUST BE EVEN FOR THIS EXAMPLE

ny 2

bn [expr
11 [expr
12 [expr

now create
block2D $nx $ny 1 1 $Quad $eleArgs {

1 0
2 40
3 40 10
4 0 10

$nx + 1]
$nx/2 + 1]
$11 + $ny*($nx+1)]

the nodes and elements using the block2D command

Single point constraints
node ul u2

#
fix
fix

1
$bn

1
1

Gravity loads
pattern Plain 1 Linear {

o1

load $11 0.0 -1.0
load $12 0.0 -1.0

Load control with variable load steps
init Jd min max
integrator LoadControl 1.0 1 1.0 10.0

Convergence test
tolerance maxIter displayCode

test EnergyIncr 1.0e-12 10 0

Solution algorithm
algorithm Newton

DOF numberer
numberer RCM

Cosntraint handler
constraints Plain

System of equations solver
system ProfileSPD

Analysis for gravity load
analysis Static

Perform the analysis
analyze 10

recorder Node Node.out disp -time -node $11 -dof 2
recorder plot Node.out CenterNodeDisp 625 10 625 450 -columns 1 2

52

create the display

recorder display g3 10 10 800 200 -wipe
prp 20 5.0 100.0

vup 01 0

viewWindow -30 30 -10 10

display 10 0 5

Remove the static analysis & reset the time to 0.0
wipeAnalysis
setTime 0.0

Now remove the loads and let the beam vibrate
remove loadPattern 1

Create the transient analysis

test EnergyIncr 1.0e-12 10 0
algorithm Newton

numberer RCM

constraints Plain

integrator Newmark 0.5 0.25

#integrator GeneralizedMidpoint 0.50
analysis Transient

Perform the transient analysis (50 sec)

numSteps dt
analyze 100 0.5
Results

The results consist of the file Node.out, which contains a line for every time step. Each
line contains the time and the vertical displacement at the bottom center of the beam. The
time history is shown in figure 14.

93

0.4

0.2

0.1 b

Displacement
(=]

0 50 100 150 200 250 300
Time

Figure 14: Displacement vs. Time for Bottom Center of Beam

54

7 EXAMPLE 7 - Dynamic Shell Analysis

In this example a simple problem in shell dynamics is considered. The structure is a curved
hoop shell structure that looks like the roof of a Safeway.

Files Required

1. Example7.1.tcl

Model

For shell analysis, a typical shell element is defined as a surface in three dimensional
space. Each node of a shell analysis has six degrees of freedom, three displacements and
three rotations. Thus the model is defined with ndm := 3 and ndf := 6.

For this model, a mesh is generated using the “block2D” command. The number of nodes
in the local x-direction of the block is nz and the number of nodes in the local y-direction
of the block is ny. The block2D generation nodes {1,2,3,4, 5,7,9} are defined such that the
structure is curved in three dimensional space.

The OpenSees shell element is constructed using the command “ShellMITC4”. An elastic
membrane-plate material section model, appropriate for shell analysis, is constructed using
the “ElasticMembranePlateSection” command. In this case, the elastic modulus F := 3.0e3,
Poisson’s ratio v := 0.25, the thickness A := 1.175 and the mass density per unit volume
p =127

For initial gravity load analysis, a single load pattern with a linear time series and three
vertical nodal loads are used.

Boundary conditions are applied using the fixZ command. In this case, all the nodes
whose z-coordiate is 0.0 have the boundary condition {1,1,1, 0,1,1}. All degrees-of-freedom
are fixed except rotation about the x-axis, which is free. The same boundary conditions are
applied where the z-coordinate is 40.0.

Analysis

A solution algorithm of type Newton is used for the problem. The solution algorithm
uses a ConvergenceTest which tests convergence on the norm of the energy increment vector.
Five static load steps are performed.

Subsequent to the static analysis, the wipeAnalysis and remove loadPatern commands
are used to remove the nodal loads and create a new analysis. The nodal displacements have
not changed. However, with the external loads removed the structure is no longer in static
equilibrium.

The integrator for the dynamic analysis if of type GeneralizedMidpoint with o := 0.5.
This choice is uconditionally stable and energy conserving for linear problems. Addition-
ally, this integrator conserves linear and angular momentum for both linear and non-linear

problems. The dynamic analysis is performed using 250 time increments with a time step
At := 0.50.

OpenSees Script

95

model basic -ndm 3 -ndf 6

create the material

section ElasticMembranePlateSection 1 3.0e3 0.25 1.175

set some parameters for node and element generation
set Plate ShellMITC4

set eleArgs "1"

#these should both be even
set nx 8
set ny 2

#loaded nodes

set mid [expr (($nx+1)*($ny+1)+1) / 2]

set sidel [expr ($nx + 2)/2]

set side2 [expr ($nx+1)*($ny+1) - $sidel + 1]

generate the nodes and elements
block2D $nx $ny 1 1 $Plate $eleArgs {

1 -20 0 0
2 -20 0 40
3 20 0 40
4 20 0 0
5 -10 10 20
7 10 10 20
9 0 10 20

add some loads
pattern Plain 1 Linear {

load $mid 0.0 -0.5 0.0 0.0 0.0 0.0
load $sidel 0.0 -0.25 0.0 0.0 0.0 0.0
load $side2 0.0 -0.25 0.0 0.0 0.0 0.0

define the boundary conditions

rotation free about x-axis (remember right-hand-rule)
fixZ 0.0 111 011

fixZ 40.0 111 011

Load control with variable load steps

26

1

.27

init Jd min max
integrator LoadControl 1.0 1 1.0 10.0

Convergence test
tolerance maxIter displayCode
test Energylncr 1.0e-10 20 1

Solution algorithm
algorithm Newton

DOF numberer
numberer RCM

Cosntraint handler
constraints Plain

System of equations solver
system SparseGeneral -piv
#system ProfileSPD

Analysis for gravity load
#analysis Transient
analysis Static

Perform the gravity load analysis
analyze 5

recorder Node Node.out disp -time -node $mid -dof 2

recorder plot Node.out CenterNodeDisp 625 10 625 450 -columns 1 2
recorder display shellDynamics 10 10 600 600 -wipe

prp -100 20 30

vup 0 1 O

display 1 0 100

o7

Remove the static analysis & reset the time to 0.0
wipeAnalysis
setTime 0.0

Now remove the loads and let the beam vibrate
remove loadPattern 1

Create the transient analysis

test Energylncr 1.0e-10 20 1
algorithm Newton

numberer RCM

constraints Plain

#integrator GeneralizedMidpoint 0.50
integrator Newmark 0.50 0.25

analysis Transient

Perform the transient analysis
analyze 250 0.5

Results

The results consist of the file Node.out, which contains a line for every time step. Each
line contains the time and the vertical displacement at the upper center of the hoop structure.
The time history is shown in figure 15.

o8

0.015

0.005 [b

AV

-0.015- -

Displacement

~0.02 I I I I I

Time

Figure 15: Displacement vs. Time for Top Center of Hoop Structure

99

8 EXAMPLE 8 - Cantilever Beam

In this example a simple problem in solid dynamics is considered. The structure is a cantilever
beam modelled with three dimensional solid elements.

Files Required

1. Example8.1.tcl

Model

For three dimensional analysis, a typical solid element is defined as a volume in three
dimensional space. Each node of the analysis has three displacement degrees of freedom.
Thus the model is defined with ndm := 3 and ndf := 3.

For this model, a mesh is generated using the “block3D” command. The number of nodes
in the local x-direction of the block is nz, the number of nodes in the local y-direction of the
block is ny and the number of nodes in the local z-direction of the block is nz. The block3D
generation nodes {1,2,3,4,5,6,7,8} are prescribed to define the three dimensional domain of
the beam, which is of size 2 x 2 x 10.

Two possible brick elements can be used for the analysis. These may be created using
the terms “stdBrick” or “bbarBrick.” An elastic isotropic material is used.

For initial gravity load analysis, a single load pattern with a linear time series and a
single nodal loads is used.

Boundary conditions are applied using the fixZ command. In this case, all the nodes
whose z-coordiate is 0.0 have the boundary condition {1,1,1}, fully fixed.

Analysis

A solution algorithm of type Newton is used for the problem. The solution algorithm
uses a ConvergenceTest which tests convergence on the norm of the energy increment vector.
Five static load steps are performed.

Subsequent to the static analysis, the wipeAnalysis and remove loadPatern commands
are used to remove the nodal loads and create a new analysis. The nodal displacements have
not changed. However, with the external loads removed the structure is no longer in static
equilibrium.

The integrator for the dynamic analysis if of type GeneralizedMidpoint with o := 0.5.
This choice is uconditionally stable and energy conserving for linear problems. Addition-
ally, this integrator conserves linear and angular momentum for both linear and non-linear
problems. The dynamic analysis is performed using 100 time increments with a time step
At = 2.0.

OpenSees Script

Start of model generation

60

Create ModelBuilder with 3 dimensions and 6 DOF/node
model basic —-ndm 3 -ndf 3

create the material
nDMaterial ElasticIsotropic 1 100 0.256 1.27

Define geometry

define some parameters

set eleArgs "1"

set element stdBrick
#set element BbarBrick

set nz 6
set nx
set ny 2

N

set nn [expr ($nz+1)*($nx+1)*($ny+1) 1

mesh generation
block3D $nx $ny $nz 1 1 $element $elelArgs {

1 -1 -1 0
2 1 -1 0
3 1 1 0
4 -1 1 0
5 -1 -1 10
6 1 -1 10
7 1 1 10
8 -1 1 10

set load 0.10

Constant point load
pattern Plain 1 Linear {

load $nn $load $load 0.0
}

boundary conditions
fixZ 0.0 111

61

Load control with variable load steps
init Jd min max
integrator LoadControl 1.0 1 1.0 10.0

Convergence test
tolerance maxIter displayCode
test NormUnbalance 1.0e-10 20 1

Solution algorithm
algorithm Newton

DOF numberer
numberer RCM

Cosntraint handler
constraints Plain

System of equations solver
system ProfileSPD

Analysis for gravity load
analysis Static

Perform the analysis
analyze 5

recorder Node Node.out disp -time -node $nn -dof 1
recorder plot Node.out CenterNodeDisp 625 10 625 450 -columns 1 2

recorder display ShakingBeam O O 300 300 -wipe
prp —100 100 120.5

vup 0 1 0

display 1 0 1

62

Remove the static analysis & reset the time to 0.0
wipeAnalysis
setTime 0.0

Now remove the loads and let the beam vibrate
remove loadPattern 1

Create the transient analysis

test Energylncr 1.0e-10 20 1
algorithm Newton

numberer RCM

constraints Plain

integrator Newmark 0.5 0.25

#integrator GeneralizedMidpoint 0.50
analysis Transient

Perform the transient analysis (20 sec)
numSteps dt

analyze 100 2.0

}

Results

The results consist of the file cantilever.out, which contains a line for every time step. Each line
contains the time and the horizontal displacement at the upper right corner the beam. The time history
is shown in figure 16.

63

0.8 =

0.6 N

0.4 4

0.2 1

Displacement
(=]

1
o
©
T
Il

L L L L
0 50 100 150 200 250
Time

Figure 16: Displacement vs. Time for Upper Right Corner of Beam

64

