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Abstract

The mathematical structure and numerical analysis of classical small deformation
elasto—plasticity is generally well established. However, development of large defor-
mation elastic—plastic numerical formulation for dilatant, pressure sensitive material
models is still a research area.

In this paper we present development of the finite element formulation and imple-
mentation for large deformation, elastic—plastic analysis of geomaterials. Our develop-
ments are based on the multiplicative decomposition of the deformation gradient into
elastic and plastic parts. A consistent linearization of the right deformation tensor
together with the Newton method at the constitutive and global levels leads toward
an efficient and robust numerical algorithm. The presented numerical formulation is
capable of accurately modeling dilatant, pressure sensitive isotropic and anisotropic
geomaterials subjected to large deformations. In particular, the formulation is capable
of simulating the behavior of geomaterials in which eigentriads of stress and strain do
not coincide during the loading process.

The algorithm is tested in conjunction with the novel hyperelasto—plastic model
termed the B material model, which is a single surface (single yield surface, affine
single ultimate surface and affine single potential surface) model for dilatant, pressure
sensitive, hardening and softening geomaterials. It is specifically developed to model
large deformation hyperelasto—plastic problems in geomechanics.

We present an application of this formulation to numerical analysis of low confine-
ment tests on cohesionless granular soil specimens recently performed in a SPACEHAB
module aboard the Space Shuttle during the STS-89 mission. We compare numerical
modeling with test results and show the significance of added confinement by the thin

hyperelastic latex membrane undergoing large stretching.
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1 Background

Theoretical as well as implementation issues in material non—linear finite element analysis of
solids and structures are increasingly becoming better understood for the case of infinitesi-
mal strain theories. Likewise, large deformation theories and implementations for materials
obeying J5 plasticity rules are fairly advanced. Large strain analysis involving geometric and
material non-linearities or pressure sensitive geomaterials are still the subject of active re-
search. The choice of appropriate stress and strain measures, as well as the issues pertaining
to the integration of elasto—plastic constitutive equations under conditions of large strain are
still disputed in the research community.

The key assumption in infinitesimal deformation elasto—plasticity is the additive de-
composition of strains into elastic and plastic parts. A number of generalized mid-point
numerical algorithms, ranging from purely explicit to purely implicit schemes was developed
and their accuracy assessed (Crisfield [9], Koji¢ and Bathe [20], Ortiz and Popov [35], Simo
and Taylor [48], Ortiz and Simo [36], Runesson et. al. [41], Krieg and Krieg [22] to mention
a few). Implicit, backward Euler integration schemes have in recent years been proven to be
robust and efficient. Algorithmic tangent stiffness tensors have been derived (starting with
the pioneering work of Simo and Taylor [48] and Runesson and Samuelsson [40]) for most of
the integration schemes.

It is important to note that strains are non-linear functions of displacements and thus
additive decomposition of total strains into elastic and plastic components hold only for
infinitesimal deformations (see more in Lubarda and Lee [29] and Famiglietti and Prevost
[13]) Moreover, a simple example is presented, which illustrates differences between large and
small deformation analysis. The response of a solid in terms of small and large deformations
is compared. To this end we use the definition of a deformation gradient Fj; = x; ; and the
Lagrangian strain tensor F;;) and compare it with the small deformation strain tensor €;;.

Clearly the difference between Ej; and ¢;; is in the nonlinear term of displacement derivatives:

1
(wig +uji +uigugs) € = 5 (g + ) (1)

mﬁ. = 5

DN | —

Only very small deformations can approximate E;; with €;;. The error exceeds 10% after a
nominal strain of 30%. Fig. 1 shows that by using the small deformation strain measure
instead of the large deformation strain, significant error is introduced.

The early extensions to large deformation of rate based numerical methods for elasto—
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Figure 1: Error introduced by using the small strain instead of Lagrangian strain tensor.

plastic analysis of solids was conducted in the Lagrangian form'. Large deformation principle
of virtual work based formulation for large strain elastic—plastic analysis of solids in the
Lagrangian form was proposed by Hibbitt et al. [16]. The Eulerian form of the solution
to the problem was proposed by McMeeking and Rice [32]. The disadvantage with this
approach was in the necessary use of incrementally objective integration algorithms that
may be computationally expensive. Hypoelastic based techniques, aimed at problems with
small elastic strains were also proposed by many others, (see for example Saran and Runesson
[42]). A number of problems encountered with different stress rates were noted by Nagtegaal
and de Jong [34], Koji¢ and Bathe [21] and Szabé and Balla [52].

On the other hand, hyperelastic based techniques have been developed recently for purely
deviatoric plasticity, for example by Simo and Ortiz [47], [45], Bathe et al. [2], Simo [43],
[44], Eterovic and Bathe [12], Peri¢ et al. [39] and Cuitino and Ortiz [10]. Most of the
multiplicative split techniques are based on the earlier works of Hill [17], Bilby et al. [3]
Kroner [23], Lee and Liu [26], Fox [14] and Lee [25].

Simo and Ortiz [47] where the first to propose a computational approach entirely based on
the multiplicative decomposition of the deformation gradient. Their stress update algorithm,
however, used the cutting plane scheme that has been shown by de Borst and Feenstra [11]
to yield erroneous results for some yield criteria. Bathe et al. [2] have used the multiplicative
decomposition with logarithmic stored energy function and an exponential approximation of

the flow rule for non—linear analysis of metals. Eterovic and Bathe [12] included kinematic

!Hypoelasticity is presented in spatial format. Virtual work is normally stated in the material format.



hardening in their development, but they did not address the issue of tangent stiffness tensors
consistent with the use of the Newton scheme for the solution of finite element equations in
the finite deformation regime. They have also explored the use of a series expansion of the
Hencky strain tensor in their numerical algorithm. However, developments were made for
deviatoric plasticity only.

Perié¢ at al. [39] followed their work and experimented with various rate forms and their
approximations. They also restricted the use of their algorithm to the small elastic strain
case. Cuitino and Ortiz [10] proposed a method for extending small strain state update
algorithms and their corresponding consistent tangent stiffness moduli into the finite defor-
mation regime but, although they claim that the method is applicable to various material
models, they stayed with the .J; plasticity model. Simo [43], [44], explored a strain-space
formulation. The analysis was conducted for a linear hardening .J, plasticity problem. In
his later work, Simo [45] consolidated the theoretical framework and showed some excellent
examples of three dimensional large deformation .J, elasto—plastic analysis. Limited applica-
tion of that work to geomaterials has been shown by Simo and Meschke [46]. They applied
the developed framework to the Cam—Clay and general plasticity type of models, used in
geotechnics. They have also explored different implicit—explicit schemes for integration of
the hardening law in order to bypass the hardening induced non—-symmetric tangent stiff-
ness moduli. The shortcoming of that work was that an associated flow rule was adopted,
thus resulting in overestimation of dilatation. Moreover, loss of collinearity between stress
and strain eigentriads (occurring during non—proportional loading of geomaterials) cannot
be modeled with this category of algorithm.

More recently Lewis and Khoei [27] used a rate-based total Langrangean formulation to
the analysis of compacted powders. Peri¢ and de Souza Neto [38] used an operator split
algorithm in terms of principal stresses in conjunction with the Tresca model. Armero [1]
extended the multiplicative algorithm (originally developed by Simo) for a coupled poro—
plastic fully saturated medium. Borja and Alarcon [5] [8] used multiplicative decomposition
in principal coordinates (Simo’s formulation) for the problem of large deformation consoli-
dation. Borja et al. [6], [4], [7] applied Simo’s approach to the Cam—Clay family of models.
Liu et al. [28] have applied an earlier algorithm developed by Simo [46] and added a new
nonlinear elastic law for the analysis of tire—sand composite material. The above develop-
ments make an implicit assumption on co—linearity of principal directions of stress and strain

tensors, which renders them unusable for anisotropic hardening/softening material models.



In the following, finite element and constitutive formulations for a general hyperelastic—
plastic geomaterial are presented. More specifically, section 2 presents a large deformation
finite element formulation with focus on the Lagrangian description. Section 3 provides
hyperelastic and hyperelastic—plastic background descriptions and describes the constitutive

integration algorithm. Selected results are presented in section 4.

2 Material and Geometric Non—Linear Finite Element
Formulation

In the following we present a detailed formulation of a material and geometric non-linear
static finite element analysis scheme. The configuration of choice is material or Lagrangian.
The local form of equilibrium equations in Lagrangian format for the static case can be

written as:
33 — pob; = 0 va

where P;; = Sij(Fy)" and Sy, are first and second Piola—Kirchhoff stress tensors, respec-
tively and b; are body forces. The weak form of the equilibrium equations is obtained by
premultiplying (2) with virtual displacements du; and integrating by parts with reference to
the initial configuration By (initial volume Vj):

Vo

Vo So

It proves beneficial to rewrite the left hand side of (3) by using the symmetric second Piola—

Kirchhoff stress tensor S;:

1
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where we have used the symmetry of S; and definition for deformation gradient Fjy; =

Oki + ug,;. With a convenient definition of the differential operator @zﬁ:? 2u;)

. 1 1

@.;HS“ N§v =5 AHQQ + HS;.V + 5 AHSQ. NQE. + MQS. Hstv (5)
the virtual work equation (4) can be written as:

W (Suz, u™)) + W (6u;) = 0 (6)



with:
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We choose a Newton type procedure for satisfying equilibrium. Given the displacement
field :MSC&.Y in iteration £, the iterative change Au; = Sci: - 5@ is obtained from the
linearized virtual work expression

W (6w, ulF ™Y o W (ous, ul®) + AW (us, Aug; u™) (9)

Here, W (0u;, QMSV is the virtual work expression
W (6ug, ulF) = Wt (Sug, ul®) + Wert (5u,) (10)

where AW (du;, Auy; :MSV is the linearization of virtual work

e—0 Oe

= \ @SQmQS st h@.i NWEADQS st m:\ + D@SA%Qf QSV ‘WG &<
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(11)

Here we have used &MS = H\w NQE&QE = NQENWEADQ? st
In order to obtain expressions for the stiffness matrix we shall elaborate further on (11).

To this end, (11) can be rewritten by expanding the definition for E as

DE\Q::DSW:MSV =
1
o, ((6uj + duig) + (wjrdur; + 0ui iy, ;)

Lk ((Augy + Aug ) + (g sAugy + Auysugy)) dV +
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Or, by conveniently splitting the above equation we can write
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By further reorganizing (13) and collecting terms we can write:

1
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It should be noted that the Algorithmic Tangent Stiffness (ATS) tensor L;; possesses

QFMDQEN + Dﬁrmﬁm%v dV
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both minor symmetries (L;jx = Ljire = Lijir). However, major symmetry cannot be guar-
anteed. Non-associated flow rules in elastoplasticity lead to the loss of major symmetry
(Lijki /~Lrij). Moreover, it can be shown (i.e. [19]) that an algorithmically induced sym-
metry loss is observed even for associated flow rules.
Upon observing minor symmetry of L;;,; one can write (15) a
AW (Suz, Aug; ul™) = | Guij Lijea AuggdV

+ %Qﬁm hﬁ.i Q?mbﬁﬁm&a\

Qe
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Similarly, by observing symmetry of the second Piola—Kirchhoff stress tensor S;; we can
write
DMS\A%ﬁf Dﬁf QMSV = %QQDQNQ ,mﬂﬁm:\« C.,Nv
Qe
The weak form of equilibrium expressions for internal (W) and external (W) virtual
work, with the above mentioned symmetry of S;; can be written as

WOy, ") = [ Gusg SydV + [ Suigun SidV (18)

Qe
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Standard finite element discretization of the displacement field is:

u; &~ u; = Hyug, (20)



where u; is the approximation displacement field u;, H;y are FEM shape functions and
are nodal displacements. With this approximation, we have:
DHE\A%Q\? DQ\& QMSV = \ AmNL.%@ZV hﬁ.i QN@%D@@D dV
Q
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Upon noting that virtual nodal displacements duy; are any non-zero, continuous displace-
ments, and since they occur in all expressions for linearized virtual work, they can be factored
out and after some rearengement can be written as (while remembering that AT + AW +
S\mﬁ + S\i& — Ov”
A [ HyLoutordV + | HisCouHopiissHodV+
+ o Hp Hjjtg,LijuHyptugHg dV
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The global algorithmic tangent stiffness matrix (tensor) is given as
(AW (Su;, Aug; ul))

H 0 mih&im@%%\._. . mih&imim,:m@a%\
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The global algorithmic tangent stiffness matrix contains both the linear strain incremental
stiffness matrix and the nonlinear geometric and initial stress incremental stiffness matrix.
The vector of externally applied load is then

Qe Qe

while the load vector from element stresses is given as
F=| (Hrg) SydV+ | (Hrs) (Higtsr) SizdV (28)
It is important to note that the algorithmic tangent stiffness tensor, vector of externally
applied loads, and the vector of element stresses are second and fourth order tensor. Con-
version from tensors to matrices and vectors is performed by the assembly functions. It
is also important to note that the tensor of unknown displacements Aug; is flattened to
a one dimensional vector (Aw;) through proper implementation. The iterative change in

displacement vector Aw,; is obtained by setting the linearized virtual work to zero

S\QSEQ.IJ =0 = S\Q:@;:MSV = — AW (du;, DSEMSV (29)

3

In particular, the choice of the undeformed configuration €2y for a computational domain
(Q. = Qp) yields the Total Lagrangian (TL) formulation. The iterative displacement Aw; is

obtained from the equation

W (6us, :iﬁmsv = —AW (dui, Aug; :tﬁmsv (30)
where
S\AQQSS.IEMSV — \ mj@. A%ﬁ?s.:ﬁm@v §+HM_M.AV dV
- £o %QS 3.:?. dV — %QS §+¢@. dS Ava
Qe 09,
and

DS\@@?D:&?IEMSV = \@s@:@;:iﬁmsv :ihma\w MQAD:?:i:MSV dV

c

Qe

In the case of hyperelastic—plastic response, the second Piola—Kirchhoff stress :t@.@@ ) is
obtained by integrating the constitutive law, described in section 3. It should be noted

that by performing the integrations in the intermediate configuration, we obtain the Mandel
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-1 —

stress :iﬂ@. and subsequently the second Piola—Kirchhoff stress w\a. = AQ:QV Ti;. The ATS
tensor N@.i is then obtained based on w\&. In order to obtain the second Piola—Kirchhoff
stress Si; and ATS tensor in the initial configuration we need to perform a pull-back from

the intermediate configuration to the initial state

3+~%®. — 3+§@W :+Hﬁw~ :+Hrw_§ Awwv

n+1 __n+lpp n+lpp nt+lpp n+lop n+tlp
h@.i - Fim, Nﬂ? ﬁ% Nﬂi Lnrs Awmc

The formulation presented above is rather general and relevant to a large set of engineer-
ing solids, both isotropic and anisotropic. This generality will be further enhanced in section
3 with general, constitutive level computations that can handle both isotropic and general

anisotropic materials.

3 Finite Deformation Hyperelasto—Plasticity

3.1 Hyperelasticity

A material is called hyperelastic or Green elastic, if there exists an elastic potential function
W, also called the strain energy function per unit volume of the undeformed configuration,
which represents a scalar function of strain of deformation tensors, whose derivatives with
respect to a strain component determines the corresponding stress component. The most
general form of the elastic potential function, is described in equation (35), with restriction to

pure mechanical theory, by using the aziom of locality and the aziom of entropy production?:

W =W (Xg, Fyx) (35)

3

By using the aziom of material frame indifference’, we conclude that W depends only on

;NW and QN,T that is:

W=W A»XM? Qﬁwv or: W=W A»X‘Wv Q@.v Awmv

?See Marsden and Hughes [31] pp. 190.
3See Marsden and Hughes [31] pp. 194.
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In the case of material isotropy, the strain energy function W (X, Cr;) belongs to the

class of isotropic, invariant scalar functions. It satisfies the relation:

W (Xk,Cxr) =W AN? Rri1Cly AQ,PVJ (37)

where (i is the proper orthogonal transformation. If we choose Qx; = Rk, where Ry
is the orthogonal rotation transformation, defined by the polar decomposition theorem in

equation (see Malvern [30]), then:

W A»X‘Wu Qwﬁhv =W A»X‘Wu QWNV =W A;XM? @Ev Awmv

Right and left stretch tensors, Uy, vk have the same principal values (principal stretches)

Ai ; ¢ = 1,3 so the strain energy function W can be represented in terms of principal

stretches, or similarly in terms of principal invariants of the deformation tensor:

W = W (Xie, At Aoy Asy ) = W (Xie, Ty, I, ) (39)
where:

I o Crr

L W ADM - QEQEV

I % det (Cy)) = w@ismq;qsqi e (40)

Left Cauchy—Green tensors is defined as C;; = (Fgr)'Fys, and the spectral decomposition
theorem (see Simo and Taylor [49]) for symmetric positive definite tensors states that Cp; =
N4 Qﬁ&?wévm where A = 1,3 and N; are the eigenvectors (||N;|| = 1) of Cy;. We can

then calculate roots (\%) of the characteristic polynomial
PO Y X+ A — LA+ ;=0 (41)

It should be noted that no summation is implied over indices in parenthesis. For example, in
the present case ZM& is the A-th eigenvector with members ZH?:“ Zm?: and 2%5“ so that the
actual equation Cry = \} Cﬁ& 2,m>vv> can also be written as Cry = Y473 >w>v>\~§v>mm3. In
order to follow the consistency of indicial notation in this work, we shall make an effort to

represent all the tensorial equations in indicial form.
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The mapping of the eigenvectors is given by

Aoy mi = Fyy NV (42)
where __:ME__ = 1. The spectral decomposition of F;;, R;; and b;; is then given by
A) nr(A
Fyy = (nf"NGY) | (43)
=) N )
Riy =3 m"'N; (44)
A=1
A) (A

Recently, Ting [53] and Morman [33] have used Serrin’s representation theorem in order
to devise a useful representation for generalized strain tensors E;; through C7%. After some

tensor algebra the Lagrangian eigendyad ZM& 2,%:“ can be written as

) Cry— AD - v@:v ory + \.wy@vaQLv:

NWNW — Ay . . - (46)
It should be noted that the denominator in equation (46) can be written as:
4 2 —2 _ (2 2 2 2 ) def
2X ) = IXeay + B = (M) = M) (W) = Aey) = Doy (47)

where indices A, B, C' are cyclic permutations of 1,2, 3. It follows directly from the definition
of D4y in equation (47) that A\ # Xy # A3 = D(ay # 0 for equation (46) to be valid.

Similarly we can obtain:
_ -~ A) Ar(A
(C =2 (NINGY) | (48)

The most general form of the isotropic strain energy function W in terms of of principal

stretches can be expressed as:

S\Hg\mkwﬂv;ﬂywﬂngv A%@v
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In order to obtain the second Piola—Kirchhoff stress tensor S;; (and other stress mea-
sures) it is necessary to calculate the gradient 0W /0C;; . Moreover, the material tan-
gent stiffness tensor L;;x require second order derivatives of the strain energy function

O*W /(0Cr; OCky1). In order to obtain these quantities we introduce a second order tensor
.>\\?c
1J

A)  def - A A
MEP  h NG N £
_ A) (A _
= (F) " (ninfV) (Fj) !
1

- NVTC AQFN - ANH o v,wm:v %ﬁw + vax\bwvAQ\Hvﬁwv from (46)

where D4y was defined by equation (47). With i&: defined by equation (50), we obtain

Cry =X (M), (51)
and it also follows
(C™N) s = M) + M3 + M) (52)
It can also be concluded that:
O = Ny Miy + Ny M7 + Xy M) = 3% (M])) | (53)

since, from the orthogonal properties of eigenvectors
3
_ (A) A7(A) _ (ar(4) (4)
Sy = W? NGV = (M) (V) (54)

We also define the Simo-Serrin fourth order tensor Mrsxz, as:

I
OCkr
& T:Nh — Ogr0rs + %& QE N&%ﬁv + imv %Nﬁv +
+ \.w»@wv QQLVEAQL?«@ + W QQL?NAOTJ,E + AQLVFAQL?NVV -
= A I (O MG+ M (C k) = Dy Miy Micy) (55)

A complete derivation of My, is given by Simo and Taylor [49].

We can then define hyperelastic stress measures as

e 2. Piola—Kirchhoff stress tensor S;; = w%@ﬁ

14



e Mandel stress tensor 177 = Crx Sk
e 1. Piola—Kirchhoff stress tensor Py = S7;(Fjr)t

e Kirchhoff stress tensor 7,5 = Fo7(Fps)'Srs

where
oW (Aa)) _ @%ﬁxggv +®§S\CABV
0Crs 0Cry 0Crs
1 oYW (J _ 1
= 2 T e g wa (M)
and
1 0"W (\a)) ~ W (Neay) =
Wy = —— ‘% ?Cv Ap + ‘zﬁ ?cv A(4)
3 @v,m @v&bv

The tangent stiffness operator is defined as
Lrxr=""Lrixr+ "Lk
with
“'Lrikp =

%we&g\ ,N
%%ﬁﬁéi@é: +J

%e&E\A %v

QCQNS\AFNV .NAQ\HV
oJ

(C™ke(C s+ 27k

5 Lrskr = Yap (M) s (M) +2wa (M%) a

3.2 Multiplicative Decomposition

(56)

(58)

(59)

(60)

Multiplicative decomposition of the deformation gradient is used as a kinematical basis for

the developments described here. The motivation for the multiplicative decomposition can be

traced back to the early works of Bilby et al. [3], and Kroner [23] on micromechanics of crystal

dislocations and application to continuum modeling. In the context of large deformation

15



elastoplastic computations, the work by Lee and Liu [26], Fox [14] and Lee [25] generated
an early interest in multiplicative decomposition.

The appropriateness of multiplicative decomposition technique for soils may be justified
from the particulate nature of the material. From the micromechanical point of view, plastic
deformation in soils arises from slipping, crushing, yielding and plastic bending® of granules or
platelets comprising the assembly®. It can certainly be argued that deformations in soils are
predominantly plastic, however, reversible deformations could develop from the elasticity of
individual soil grains, and could be relatively large, when particles are locked in high density

specimens.

~

J

Figure 2: Multiplicative decomposition of deformation gradient: schematics.

The reasoning behind multiplicative decomposition is a rather simple one. If an infinites-
imal neighborhood of a body x;, z; + dz; in an inelastically deformed body is cut—out and
unloaded to an unstressed configuration, it would be mapped into Z;, T; + dz;. The transfor-
mation would be comprised of a rigid body displacement® and purely elastic unloading. The
elastic unloading is fictitious, since in materials with a strong Baushinger’s effect unloading
will lead to loading in another stress direction, and if there are residual stresses, the body

must be cut—out in small pieces, and then every piece relieved of stresses. The unstressed

4For plate like clay particles.
®See also Borja and Alarcon [5] and Lambe and Whitman [24].

6Translation and rotation.
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configuration is thus incompatible and discontinuous. The position z; is arbitrary, and we

may assume a linear relationship between dz; and d#;, in the form”:

diy = (F) " da; (61)

where (F5) " is not to be understood as a deformation gradient, since it may represent the
incompatible, discontinuous deformation of a body. By considering the reference configura-

tion of a body dX;, then the connection to the current configuration is:
dzy, = FidX; = diy, = (F5) ™" FdX; (62)
so that one can define:
S (F) By = By FGE, (63)

The plastic part of the deformation gradient, Ew. represents micro—mechanically, the irre-
versible process of slipping, crushing dislocation and macroscopically the irreversible plastic
deformation of a body. The elastic part, F}; represents micro-mechanically a pure elastic re-
versal of deformation for the particulate assembly, macroscopically a linear elastic unloading
toward a stress free state of the body, not necessarily a compatible, continuous deformation
but rather a fictitious elastic unloading of small cut outs of a deformed particulate assembly

or continuum body,

3.3 Constitutive Relations
We propose the free energy density W, which is defined in the intermediate configuration €2,
as

poW (C5;, ko) = poW(C5) + poWP (Ka) (64)

R
where S\A@.m.v represents a suitable hyperelastic model in terms of the elastic right defor-

mation tensor Qm.u whereas W?(k,) represents the hardening. The pertinent dissipation

inequality becomes:

D=T,; L} +> Ky ka>0 (65)

Treferred to same Cartesian coordinate system.
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where Hg. is the Mandel stress and Nw. is the plastic velocity gradient defined on Q. We now

define the elastic domain B as

B =Ty, Ko | 8(T;;, Ku) <0} (66)

When yield function @ is isotropic in Tj; (which is the case here) in conjunction with elastic
isotropy, we can conclude that T;; is symmetric and we may replace T;; by 7;; in yield function
D.

As to the choice of an elastic law, it is emphasized that this is largely a matter of
convenience, since we shall be dealing with small elastic deformations. Here, the Neo—

Hookean elastic law is adopted. The constitutive relations can now be written as

_ . -1 0P | _
Ly = Fy, Aﬂﬁv ~Hor T f1Mi; (67)
ij
K, = K.(kp) (68)
. . 09*
\%Ht®|5 , kg(0)=0 (69)

where K, ,a = 1,2, is the “hardening stress”, ®*(r;;, K,) is the plastic potential, kg is
internal variables, /i is consistency parameter determined from the loading conditions® and

FE = (F%)~'Fy is the plastic part of the deformation gradient.

2

3.4 Implicit Integration Algorithm

The incremental deformation and plastic flow are governed by the system of evolution equa-

tions (67) and (69). The flow rule (67) can be integrated to give
"D = exp (Apmt My )"FY, (70)
By using the multiplicative decomposition
— e pp e p) *
Py = Fiy Py = Fiy, = Fyj Aﬁfv (71)
and equation (70) we obtain
:iﬂw = nhp A:ﬁth exp AIDt:iN,NSV
= "HEST exp AIDt:iNﬁb&v (72)

8These are the Karush-Kuhn-Tucker complementary conditions in the special case of fully associative
theory, defining the Standard Dissipative Material, cf. [15].
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where we used that

I =T, () (73)

2

The elastic deformation is then
_ _ T _
S.IQM. aHmw AS.IH&SV §+HNUMS.
_ _ T _ _
= exp (—Ap" ML) ("TEGT) MPEGT exp (—Apmtiy)

= exp AIDt:iNQWV nHCET exp AIDt:iN,NG.v (74)

rl

By recognizing that the exponent of a tensor can be expanded in Taylor series’

_ _ 1 _ _
exp A|>13+H§Gv = %G. — Dts.:i& + M AD‘Q\ILEIV ADFS.TGE&.V + - Aﬂmv
and by using the second order expansion in equation (74) and after some tensor algebra we

obtain

n+1~e n+1~e,tr
_ et et _
—A U AS\TC‘ @ﬁ :+HQM. T S\THQMM T :+H; \Gv

+AD§vm AS.TH.\’N. §+H>>N 3.:@@”.? + ws.:.\S. §+HOIRM¥§+H>>NG. + §+H>|5 §+H>N u.z._. Immrgv .
9 is sr rj ir r s s r
1 . . . . 1 . - . .
|A>\svw AM §+H§%§+H§% S.IQM:; 3.:»\&& . M §+H§§ §+HQMM§> §+H>5m §+H§&.v +
Ap)t _ _ - _ _
|_|A M\v AS.IE%S._.HE% §+HQM¥ S.IEI :._Li&.v Aﬂmv

First order series expansion includes constant and linear (up to Ax) members. Second order

expansion includes the complete equation above.

Remark 3.1 The Taylor’s series expansion in equation (75) is a proper approximation for
the general nonsymmetric tensor M;;. That is, the approximate solution given by equation
(76) is valid for a general anisotropic solid. This contrasts with the spectral decomposition

family of solutions!® which are restricted to isotropic solids.

Remark 3.2 In the limit, when the deformations are sufficiently small, the solution (76)

collapses to

: n+1 _ n+1_e,tr
w:mw 0 +2" e =+ 0y + 2" €
i i

9See for example Pearson [37].
10See Simo [45].
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_ Dt:ii&. B th:LnSN::imN.
— Au :+c§. —2Apu nt+l : :+§N¢.
+ th §+H>N& §+H>>NG. + MDFM §+H>N§, n+1 :A:.:NES
— 8ij + 2" — 2Ap MU,
= :+~m§. — :+H :; D.Q :+H>N®.

(77)

which represents a small deformation elastic predictor—plastic corrector equation in strain

space. In working out the small deformation counterpart (77) it was used that

Ew_mmmc siQm = 0y + wsims
MDF 3.: ? S.INES < §+H>>N®.
Ap < 1

(78)

By neglecting the higher order term with Ap? in equation (76), the solution for the right

elastic deformation tensor :+@m can be written as
n+l~e __ n+l/~ve,tr n+lasr nt+l~Aetr 3._. e,lr n+137
Gy, =105 — Ap ("IN MO+ IO M) (79)

The hardening rule (69) can be integrated to give

P
"y = "o + Al = 80
Ka Ko + AU 9K A v

@ nt1

The incremental problem is defined by equations (79), (80), the constitutive relations

- ow
"G =2 81
Y QQN& n+1 A v
R, = o 82)

Oka |,

and the Karush-Kuhn—-Tucker (KKT) conditions

Ap<0 ; "Md<0 ; Ap"te =0 (83)
where

d = (T, K,) (84)



Remark 3.3 The Mandel stress tensor Hg. can be obtained from the second Piola—Kirchhoff

stress tensor Sy; and the right elastic deformation tensor C¢ as T;; = C%, Si;

This set of nonlinear equations will be solved with a Newton type procedure, described
below. For a given "*'F};, or :+@m:“ the upgraded quantities "*'S;; and "t'K, can be

found, then the appropriate pull-back to Qg or push—forward to Q will give "*'S;; and "*'r;;

~1 _ -T
:+H‘m<~,~ — A:LLNHMMV :+H‘m<~,~ A:+HNUMNV Ammv
n+l_  _ nt+lje ntldg n+1 -1
Tij w ,m‘ﬁw uk AWQV
The elastic predictor, plastic corrector equation
ntlge — ntlgetr A ntly 87
i ij 2 ij (87)

is used as a starting point for a Newton iterative algorithm. In the previous equation, we

have introduced tensor Z;;

Zij = Ap ("N MYCHT 4 IO N, ) —
(88)

The definition of Z;; above assumes use of first order expansion in (76). The trial right—elastic

deformation tensor is defined as
n+1/~e,tr n |m;ﬂ n+1ge,tr n n -n\T n n -1
eyt = (RS (MEST) = (TEae (FR)TY) A s (") V (89)
We introduce a tensor of deformation residuals

L
~—

current BackwardEuler

Ry= Cy - (5" — Au'z,) (90)

The tensor R;; represents the difference between the current right-elastic deformation tensor
and the Backward Euler right elastic deformation tensor. The trial right—elastic deformation
tensor :i@m: is maintained fixed during the iteration process. The first order Taylor series
expansion can be applied to the tensor of residuals R;; in order to obtain the iterative change,

the new residual R} from the old R}

B otz ontlz
new _ pold e ntlyz. Zij Zij 1
R Ry +dCH + d(Ap) "7 Zij + Ap—mm— o7 AT + App——? oK. dK, (91)
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Furthermore, since

I ~e Qg e \ 1 A Q

Ton =Chp Skn = (C%)  Tan = Sk (92)
we can write

&MJSS = &QJM% ,sz + QJM% &W_w:

L 1 _
= &QM.&A ‘w\ns\ l_l m QM&W wﬁ%e &Qm
— — -1 — — —
= dCoy (C%) Tun+ m Clr Lonpg ACE, (93)
so that after setting i = 0 and some tensor algebra we obtain
old n+1 ®§+HNS
oz, Nl L2, s .
+ A%iﬁ%ﬁ& + Dt|@ﬂ AQ v Mme + 3 Dt\ %MJ pk \38 v &Q
(94)
Upon introducing the notation
QS.INQE N 1 QS.I o e
Tnnig = OimOnj + Al—pr = (Co)  Tu+s 5 Ao — T, vk Lkais (95)
we can solve for &Qm.
~e -1 old n+1 @3\2
&QE = A\Nlﬁzgv —Ry — &ADEV Zpn — Dt% dK, Awmv
By using that
0K, 0K, 0Q 0Q
dK, = —d(A —— = —d(Ap) Hyp —— 97
5 () G 7 = ) Hay 7= (97)
it follows from (96)
@:LLNSS

0K,

&Qﬁme — AQ!SSEQle Almm.wm - &AD\\@V §+HN33\ I_I D\\@ @N@

d(An) H, @|@v (98)

A first order Taylor series expansion of a yield function together with (97) provides

SQ\SAHVAMJS“N v QEAHVAMJS“N v
0Ty, Ka) (ror-t 7o 1 OB(Ty,Ka) - @
+ A# AQ% v NW§ + M @NJ‘SS\ \A \3&3 &Q
00(Ty, Ko) . OO
— d(Ap) K, Hap 0K, (99)
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Upon introducing the following notation

00(Tij, Ko) [me\~L = 1 09(T,Ka) o #e
oﬂ.@@ = @MJ‘Q AQ v MJ_%S + M @ﬂ‘u mk ~knpq AHOOV
pn mn

and with the solution for dC¢, from (98), (99) becomes

§QEAHVAMJ_S“.NW v — QEGASQ“N v
otz 0d*

+ Fpg QlSzEvL Imﬁw - &ADE :+HN§: + &ADE Ap % Hup ®|5
0P(T;;, K, 0d*
— i B R o (101)

After setting "“®(T;;, K,) = 0 we can solve for the incremental consistency parameter
d(Ap)

P — .ﬂE GlSzEvL mmﬁ

_ ., otz . 0d* od 0d*
.ﬂE A\ﬁ;:gv ' " n — Dt .ﬂE GNSEV . oK, mo& mw‘u + K, mo& mmmm
AHowv

d(Ap) =

Remark 3.4 In the limit, for small deformations, the incremental consistency parameter
d(Ap) becomes

-1
OMynn

Mo — (nyp Evnpg) | OpmOng + App ——— 9o Eijpg Rps.
d(Ap) = — i - (103)
Nonn E Ormp, +Dt®3§® "M + o2 02"
mn ~mnpq mpYqn %Q.G iymn mn @NA‘ af @Nﬂm
since in the limit, as deformations become small
W&W_WHW& \NlSSNS = %@3%3@ + Dt @Q.G .m_s.g
1 09
mﬂ_swwmmwﬁ tﬂ.@@ N m @Q.S\B\ .m_ngwvﬁ
wﬁw_mmms Zpg = 2 My
wﬁwﬁws Ryy = 26y (104)

Upon noting that the residual R,, is defined in strain space, the incremental consistency

parameter d(Ap) compares exactly with it’s small strain counterpart (Jeremié¢ and Sture

[19]).
The procedure described below summarizes the implementation of the return algorithm.
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3.4.1 Return Algorithm

Given the right elastic deformation tensor :QMQ and a set of hardening variables "K, at a
specific quadrature point in a finite element, we compute the relative deformation gradient

ntlf.; for a given displacement increment A"y,
MU = 0wy (105)
and the right deformation tensor
mHOS = A:i\: n mavﬂ A:t\E n mv — ("Fe)" A:i\: vﬂ A:i\i n mv (106)

Then we compute the trial elastic second Piola—Kirchhoff stress and the trial elastic Mandel

stress tensor

. oW
n+lgetr
S = w‘miﬁmx (107)
PHTEN = nHICET gt (108)

We then evaluate the yield function "' Aﬂw:u K,), and set

n—+1lve _ n+l~egtr
'Ce, = s
n+1 . n
K, = "K,
n—+1 _ e,tr
T; = "Iy

and exit constitutive integration procedure. If "*1® < 0 there is no plastic flow in the
current increment.
If the yield criterion has been violated ("*'®" > 0) proceed

step 1. k' iteration. Known variables

:+HQM.§ : :imws : :iwﬁms

:‘IM.WQ&

n+1 k
) J ) DEA v

evaluate the yield function and the residual

)

(k)  _  nt1me(k) n+l7~etr  n4l kyn+1-7(k)
Iy = +Q&. IALLQ@. - +Dt:+N®.v

ij

k) — eﬁziﬂwﬁs :imm%av

step 2. Check for convergence, ®*) < NTOL and __mma__ < NTOL. If convergence criterion

is satisfied set
n HQM = " HQM
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:+H}HQ

:+HNA‘

«

n+1
Ti;

S.IDE

n+1 (k)
Ko

:+HNA1%§

n+1p(k)
T;;

§+HDEQ3

Exit constitutive integration procedure.

step 3.!! If convergence is not achieved compute the elastic stiffness tensor Lijki

- 0*WwW
hmﬂ\w& =4 A Aelh) areld) (109)
step 4. Compute the incremental consistency parameter &Dt@tvv
k) — Fk) R (k)
d(Apt+D) = - .ﬁwwm i T (110)
Wsm@ Zon (k) — Ayk) F, (k) Z2mn mp@ hialli mp:a
: K., T oK,
where
H® = 1,0 00" 2w r w (Tomps®)
0K 5 Pq pq
F(k) - (k) 7 (k) 1o (k)
.ﬂ.g _ @@Aﬂslvxp v A@.Mv@vle Mﬂmﬁwv |_|W @@A Slv~ﬂp v QJMMMS hlmwmi
0T, e 2 0T n pa
0Z®) N1 1 EYAG
R . (k) mn e (k) (k) | = (k) mn ~e(k) Fe,(k)
\les\g - %33\%3& + Dt @HA\@\AV AQM.Q v NJ.m\n + 9 Dt %N\Jﬁ@ Qﬁw h\nes..w.
step 5. Update the consistency parameter Apk+1)
Dtﬁﬁlv — D.QQ& + &ADKQQLJ GHC

step 6. Calculate the increments for the right deformation tensor, the hardening variable

and the Mandel stress

~e,(k+1) __
dCe ) =
AW
oK,

"From step 3. to step 9. all of the variables are in intermediate n + 1 configuration. For the sake of

(T8,) " (—RE, — dau®+0) »+1z) 1+ Ap® d(Ap*t)y BP ) (112)

(07

brevity we are omitting superscript n + 1.
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0Pk

d (k+1) — d(A (k+1) 11
KU = d(aut) S @5 (113)
ook
AK) = —d(Ap®*+D)y B —— 114
¢ (a0 1l T (14)
~e(k+1) [ Ao\ L Zek) Aek) e
AT = dOp ) (CRP) ™ T + 5 o) Ly dC3*+Y (115)
step 7. Update the right deformation tensor C%**)  hardening variable K{*!) and
Mandel stress T(k+1)
QI.SQ?_.C — QMon &AQ Q?_.Cv
Rmi.d — Rm& + &A\Ami.dv
NA‘M\?TC — NA‘ |_| &ANA‘ (k+1) v
Lot = T+ d(T) (116)
step 8. evaluate the yield function and the residual
P+ — eﬁﬂwﬁfzv Nmi:v
k+1 ~e,(k+1 ~e,tr w 1
step 9. Set k =k + 1 and
Ap®) = Ay
~e,(k _ rve(k+1
QEA ) = QEA :
xm& _ xmi:
Nms _ N%i:
T = T (118)
and return to step 2.
3.5 Algorithmic Tangent Stiffness Tensor
Starting from the elastic predictor—plastic corrector equation
:+~QM. _ :+HO|‘MW¥ . Dt :+~N®. AHva
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to which we apply a first order Taylor series expansion to obtain (after some tensor algebra),

02 0P
H,
0K, " 0K,

dCS = (Toumi) ™ (dC5™ — d(Ap) Zij + Ap d(Ap) (120)

where 7,,n;; was defined in (95)

Next we use the first order Taylor series expansion of the yield function d®(T;;, K,) =0

0P 0P 0P 0d*
—— dTn + = dK, o — ——d(Ap) Hyp —— =
QH::& +®N dK, = Fpq dCy, oK. d(Ap) Hap oK, 0
(121)
with F,, defined in (100).
By using the solution for dC§; from (120) we can write
_ ~e.tr 0Zmn, 0"
Fog (Tonpa) ™ {dCGH — d(Apt) Zinn + A d(Ap) K, Hop 0K 5
0P 0d*
——dAp) Hyp —— = 0 122
o7 (A Has 5 (122)
We are now in the position to solve for the incremental consistency parameter d(Apu)
-1 ~e,tr
where we have used I' to denote
otz 0d* 0P o0d*
['= mn o §+HN33 - A mn o = H, H,
Fpg (Tmnpq) 1Fpg (Tranpq) oK, mwmmm +®~mp mwmmm
(124)
Since
_ 1 - .
dSkn = 3 Linpg dC, (125)
and by using (120) we can write
~e 'ﬂQ \NM%Q - %ﬁ.@ %%
&QE - A SSE A muv 3 - r A MN : Ngsn_n
\Nw v %vé %mw @NN @@* ~e,t
Ap I H o 12
K, af @Nﬂm &QS A mv
Then
dCs, = Ppgu dC3" (127)
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where

~ .ﬂ.@vmﬁgvv\H

B ®§+HN§§ @@*
Pogot = (Trmnpq) b | ol — r

Zyun — A H,
ok, oK,

(128)

The algorithmic tangent stiffness tensor mmwm (in intermediate configuration Q) is then
defined as

hlmmww‘ = IMES \\UNSS Awav

Pull-back to the reference configuration €2y yields the algorithmic tangent stiffness tensor

Lijr; in the reference configuration 2

n+1pATS _ n+lpp n+lpp n+lpp n+lpp n+l1psATS
h@.i - HS ﬂs w\iﬂ ﬁm hgsg AHwOv

Remark 3.5 In the limit, for small deformations and isotropic response, the Algorithmic

Tangent Stiffness tensor £ATS becomes

igkl
lim £ATS — pATS _ 1 Ned Reduot Rinme Hin
ﬁ&@m& vitpg — Hutpg — "Vknot T T
since
li \Nll =7 =350 A @SSS\ Ee
N_G.FWHW& mnpg - T mnpg T Tpmeng + tﬂﬁm kspq
. 1,
ﬁw._mwa. For = M3& cdab

om o0P*

m_&wawa. Hmn = Mupn M oK. af @Nﬂm

0P 0d*

lim ' =ngR - -

WJ@FIHWW@. Nab 9033\*&33\ + @.NQ af @.qu\m

It is noted that the Algorithmic Tangent Stiffness tensor given by (131) compares exactly
with it’s small strain counterpart (Jeremi¢ and Sture [19]).
3.6 Material Model

A large deformation material model used in computations is briefly described here. The

model relies on the development behind the so called MRS-Lade model (Sture et al. [51])
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and is subsequently denoted the B-Model. The B-Model is a single surface model, with un-
coupled cone portion and cap portion hardening. Very low confinement region was carefully
modeled and the yield surface was shaped in such a way to mimic recent findings obtained
during Micro Gravity Mechanics tests aboard Space Shuttle (Sture et al. [50]). The large
deformation model definition is based on the use of the Mandel stress Tj; for describing yield

and potential surfaces. A detailed description of the model is given by Jeremi¢ et al. [18].

4 Numerical Simulations of Micro Gravity Mechanics

In this section we present numerical modeling of low confinement, microgravity large de-
formation triaxial test performed during Space Shuttle STS—79 mission in September 1996.
Figure 3 shows load—displacement and volume-displacement data for three low confinement

tests. The response curves represent load-displacement data as they were measured dur-
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Figure 3: Micro Gravity Mechanics, load displacement and volume displacement curves for
the three tests.

ing the experiments. The signal contains significant noise and the presented data are in
raw form. The elastic response appears to be very stiff (from unloading-reloading loops).
Detailed description of the experimental setup is given by Sture et al. [50].

The three—dimensional finite element mesh used to model the MGM test is depicted
in Figures 4. Instead of developing two dimensional finite element formulation, we have
opted for a full three dimensional implementation. Although the state of stress is triaxial,

we model the experiments with a 3D model. Six quadratic 20—node brick elements where
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Figure 4: Finite element mesh for the MGM specimen.

A

chosen to model one—eighth of the specimen. The analysis was performed in two stages.
First stage involved isotropic compression to the design pressure. For the first stage only
symmetry displacement boundary conditions were in place. Influence of the membrane
was removed, since the membrane does not have significant stiffness in compression, and
membrane prestressing had a minor effect at this stage. During this stage the response was
purely hyperelastic.

After the the first stage, the displacement boundary conditions were changed by adding
the movable boundary at the top. The top movable boundary applied displacements to the
top nodes by means of equivalent forces, obtained through the partial inversion of a stiffness
matrix. The membrane influence was modeled by adding equivalent stiffness (springs) to the
boundary nodes. Instead of using thin, highly distorted brick elements (membrane is 0.3mm,
distortion ratio would be (2% 37.5mmm/8)/(0.3mm) = 100/1). we opted for the equivalent
spring method. The output from the one element extension tests on the hyperelastic latex
rubber specimen where used to form a non-linear spring of appropriate stiffness. Consistent
integration of the stiffness terms for the quadratic brick element then supplied equivalent

spring stiffness. Special attention was given to the specimen ends, where the latex membrane
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was wrapped around the end platen and created a ring in the horizontal plane (parallel to end
platen) which was stiffer than the unstretched membrane surrounding the specimen. The
last row of nodes was thus supported by stiffer equivalent membrane elements. The material
parameters for the B Material Model for all three confining pressures'? were kept the same
except for the Young’s modulus. This consistency in material parameters is important, since

all three specimens contained the same Ottawa F-75 sand at 85% relative density.

initial confinment p = 0.05kPa
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Figure 5: Mechanics of granular materials responses, initial confinement (py = 0.05kPa) test

(a) load—deformation and (b) volume-deformation experiments and numerical results.
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Figure 6: Mechanics of granular materials responses, initial confinement (py = 0.52kPa) test

(a) load—deformation and (b) volume-deformation experiments and numerical results.

2B = 300.0;360.0;700.0 kN/m?; v = 0.2 ; p. = 1000.0 kN/m? ; p, = 0.0 kN/m? ;n =02;a=5.0;b
= 0.707 ; Ninse = 2.5 ; b1 = 1.0 ;5 dpara = 5000.0 ; eparqg = 0.5 5 Mpes = 0.15 ; Tlpeak = 1.75 5 nstart = 0.25 ;1
=1.0; Ceone = 0.030 ; 7 = 1.00 ; ceap = 0.30 ; peo = 1000.0 kN/m? ; as = 100.0 ; bs = 0.707)

31



initial confinment p = 1.30kPa
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Figure 7: Mechanics of granular materials responses, initial confinement (py = 1.30kPa) test

(a) load—deformation and (b) volume-deformation experiments and numerical results.

Figures 5(a), 6(a) and 7(a) show comparison of numerical modeling with the test data
for load—displacement. Following observations are made. The initial (elastic) stiffness is
higher in the actual experiments. The peak strength is modeled quite accurately, while the
post—peak behavior is slightly stiffer in the numerical experiment. The residual stiffness is
softer in the numerical model than observed in the MGM tests. This can be explained by
the stiffer specimen ends in a physical test. In other words, the latex membrane wrapped
around the end platens (the end platens are 30% wider than the specimen) usually sticks to
the end platen after some radial displacements and then acts as a full restraint. The friction
between end platens and the sand specimen can also add to the whole specimen stiffness,
however, the end platens were made of highly polished tungsten—carbide, which has a very
low friction angle with quartz sand (3°), and we have thus decided to neglect the influence
of end platen friction on the overall response. It is of interest to note that the maximum
mobilized friction angle is in the range of 70° and the dilatancy angles observed in the early
parts of the experiments are 30°, which is unusually high.

Figures 5(b), 6(b) and 7(b) shows comparison of volumetric-displacement data for exper-
iments and numerical modeling. In modeling the lowest confinement (py = 0.05kPa) level
we correctly predict complete lack of volumetric compression. Numerical predictions for two
other confinements (py = 0.52kPa, py = 1.20kPa) shows small amount of initial volume
compression which was not observed in experiments. Figure 8 shows a typical specimen be-
fore and after the test. The latex ring formed by wrapping of membrane around end platens

is visible on both specimen ends.
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Figure 8: The specimen (p = 1.30 kPa) before and after the test.

The effect of the latex membrane on the load displacement behavior of specimen cannot
be neglected for the low confinement experiments. As a triaxial specimen expands, the
membrane expands as well. The stretching of the hyperelastic membrane produces additional
stresses and increase the original confinement level. Figures 9, 10 and 11 shows the influence
of latex membrane on the specimen behavior. The response without latex membrane is
softer, and it does not level off in the post peak region. The load displacement response
has a flat portion, but starts hardening after approximately 15% axial deformation for two
higher confinement tests (p = 0.52 kPa and p = 1.30 kPa), while for the the very low
confinement test (p = 0.05 kPa) it hardens monotonically. This can be explained by the
large displacement effects. For large axial deformations, lateral bulging is significant. As
the axial deformation progresses, the material (sand) moves from the specimen center to
the boundary region, thus creating a slight hardening effect. The increase in peak strength
due to the latex membrane effects is not too pronounced. The post peak region, however,
shows additional stiffening. For the lowest confinement test, the influence of the membrane
is substantial since the specimen itself (at only p = 0.05 kPa) is quite soft.

Figure 12 depicts the deformed shape of a specimen. Without the latex membrane, the

33



150.0

0040
with membrane — without membrarje
h)
__ 0030 E |
Z k w 1000
= =
S S <
O o000 W with membrane
© | ()
= — B O 500
5 L \ €
> 0010 \ Witho[t membrane nlw
0000 00
0020 0040 0,060 0.000 0.020 0.040 0.060
Amv vertical displacement [m] A_uv displacement [m]

Figure 9: Mechanics of granular materials responses, initial confinement (py = 0.05kPa)
(a) load—deformation and (b) volume-deformation numerical predictions. Influence of latex

membrane on the overall response.
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Figure 10: Mechanics of granular materials responses, initial confinement (py = 0.52kPa)
(a) load—deformation and (b) volume—deformation numerical predictions. Influence of latex

membrane on the overall response.

specimen deforms uniformly. The above mentioned end restraint results in a diffuse bulging
deformed shape, shown in Figure 12.

5 Concluding Remarks

In this paper we have presented a new large deformation constitutive formulation for ge-
omaterials. Constitutive formulation was used in conjunction with large deformation La-
grangian finite element method. The formulation is capable of simulating large deformation

hyperelastic—plastic behavior of geomaterials, even when collinearity between eigentriads of
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Figure 11: Mechanics of granular materials responses, initial confinement (py = 1.30kPa)
(a) load—deformation and (b) volume-deformation numerical predictions. Influence of latex

membrane on the overall response.
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Figure 12: Uniform and bulging deformed shape of a specimen.

stress and strains is lost (for anisotropic and cyclic response). A detailed constitutive formu-
lation has been presented. Moreover, the return algorithm was outlined with implementation
details. The developed formulation and implementation were used to simulate large defor-

mation tests on sand performed under very low confinement. To this end, a consistent set
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of material parameters for the B material model was used to accurately simulate three low
confinement tests. It was shown that the latex membrane has substantial influence on the

behavior of sand specimen at very low confinement pressures.
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