King Fahd University of Petroleum and Minerals Prep-Year Math Program

Math 001 Class Test II
Textbook Sections: 1.1 to 2.5
Term 181
Time Allowed: 90 Minutes

Student's Name:	nt's Name:					
ID #:	Section:	Serial Number:				

Provide neat and complete solutions.

Show all necessary steps for full credit and write the answer in simplest form.

No Calculators, Cameras, or Mobiles are allowed during this exam.

Question	Points	Student's Score
1	4	
2	4	
3		
4	4	
5	4 4 5 4 4	
6	4	
7		
8	6	
9	4	
10	6 5	
11	5	
Total	50	50
		100

Question 1: (4 points) (1.3 Textbook Exercises 22): Find an equation for the line whose graph is sketched.

Solution:

We choose the two intercepts, (0, -4) and (-3, 0). So the slope is $m = \frac{0 - (-4)}{-3 - 0} = -\frac{4}{3}$. Since the y-intercept is -4, the equation of the line is $y = mx + b = -\frac{4}{3}x - 4 \Leftrightarrow 4x + 3y + 12 = 0$.

Question 2: (4 points) (1.6 Textbook Example 4): Find the solution set of $2x = 1 - \sqrt{2 - x}$ **Solution:**

EXAMPLE 4 An Equation Involving a Radical

Solve the equation $2x = 1 - \sqrt{2 - x}$.

SOLUTION To eliminate the square root, we first isolate it on one side of the equal sign, then square:

$$2x - 1 = -\sqrt{2 - x}$$
 Subtract 1

$$(2x - 1)^2 = 2 - x$$
 Square each side

$$4x^2 - 4x + 1 = 2 - x$$
 Expand LHS

$$4x^2 - 3x - 1 = 0$$
 Add $-2 + x$

$$(4x + 1)(x - 1) = 0$$
 Factor

$$4x + 1 = 0$$
 or $x - 1 = 0$ Zero-Product Property

$$x = -\frac{1}{4}$$
 Solve

The values $x = -\frac{1}{4}$ and x = 1 are only potential solutions. We must check them to see whether they satisfy the original equation. From *Check Your Answers* we see that $x = -\frac{1}{4}$ is a solution but x = 1 is not. The only solution is $x = -\frac{1}{4}$.

Now Try Exercise 43

$$SS = \left\{-\frac{1}{4}\right\}$$

Question 3: (4 points) (1.2 Textbook Exercises 90): Given $x^2 + y^2 + \frac{1}{2}x + 2y + \frac{1}{16} = 0$. Find the

following

- (a): center = ?
- (b): radius = ?
- (c): Domain = ?
- (d): Range = ?

Math 001 Test II, (Textbook: 1.1 to 2.5), Instructor: Sayed Omar, Term 181, Page 2 of 5

Solution:
$$x^2 + y^2 + \frac{1}{2}x + 2y + \frac{1}{16} = 0$$

$$x^{2} + \frac{1}{2}x + \left(\frac{1}{4}\right)^{2} + y^{2} + 2y + 1^{2} = -\frac{1}{16} + \frac{1}{16} + 1$$
$$\left(x + \frac{1}{4}\right)^{2} + (y + 1)^{2} = 1$$

(a): center =
$$\left(-\frac{1}{4}, -1\right)$$

(b):
$$radius = 1$$

(c):
$$Domain = \left[-\frac{1}{4} - 1, -\frac{1}{4} + 1 \right] = \left[-\frac{5}{4}, \frac{3}{4} \right]$$

(d):
$$Range = [-1-1, -1+1] = [-2, 0]$$

Question 4: (4 points) (1.4 Textbook Exercises 54): Solve the equation $A = 2\pi r^2 + 2\pi r h$ for r = ? **Solution:**

54.
$$A = 2\pi r^2 + 2\pi r h \Leftrightarrow 2\pi r^2 + 2\pi r h - A = 0$$
. Using the Quadratic Formula,
$$r = \frac{-(2\pi h) \pm \sqrt{(2\pi h)^2 - 4(2\pi)(-A)}}{2(2\pi)} = \frac{-2\pi h \pm \sqrt{4\pi^2 h^2 + 8\pi A}}{4\pi} = \frac{-\pi h \pm \sqrt{\pi^2 h^2 + 2\pi A}}{2\pi}$$

Question 5: (5 points) (1.5 Textbook Exercises 46):

If
$$A + Bi = \frac{(1+2i)(3-i)}{2+i} + i^{2001}$$
, then find $A = ?$ and $B = ?$

Solution:

$$\frac{(1+2i)(3-i)}{2+i} = \frac{3-i+6i-2i^2}{2+i} = \frac{5+5i}{2+i} \cdot \frac{2-i}{2-i} = \frac{10-5i+10i-5i^2}{4-i^2} = \frac{(10+5)+(-5+10)i}{5}$$
$$= \frac{15+5i}{5} = \frac{15}{5} + \frac{5}{5}i = 3+i$$

$$i^{2001} = i^{2000}i = \left(i^2\right)^{1000}i = i$$

$$A + Bi = 3 + 2i \implies \boxed{A = 3}$$
 and $\boxed{B = 2}$

Math 001 Test II, (Textbook: 1.1 to 2.5), Instructor: Sayed Omar, Term 181, Page 2 of 5

Math 001 Test II, (Textbook: 1.1 to 2.5), Instructor: Sayed Omar, Term 181, Page 3 of 5

Question 6: (4 points) (1.6 Textbook Exercises 22):

Find the solution set of $2(x-4)^{7/3} - (x-4)^{4/3} - (x-4)^{1/3} = 0$

Solution:

Let u = x - 4; then $0 = 2(x - 4)^{7/3} - (x - 4)^{4/3} - (x - 4)^{1/3} = 2u^{7/3} - u^{4/3} - u^{1/3} = u^{1/3}(2u + 1)(u - 1)$. So $u = x - 4 = 0 \Leftrightarrow x = 4$, or $2u + 1 = 2(x - 4) + 1 = 2x - 7 = 0 \Leftrightarrow 2x = 7 \Leftrightarrow x = \frac{7}{2}$, or $u - 1 = (x - 4) - 1 = x - 5 = 0 \Leftrightarrow x = 5$. The solutions are $4, \frac{7}{2}$, and 5.

Question 7: (4 points) (1.7 Textbook Exercises 69):

Find the solution set of the following inequality in interval notation. $\frac{(x-1)(x+2)}{(x-2)^2} \ge 0$

Solution: CRV: -2, 1 and 2

Interval	$(-\infty, -2)$	(-2, 1)	(1, 2)	(2, ∞)
Sign of $x-1$	_	_	+	+
Sign of $x + 2$	_	+	+	+
Sign of $(x-2)^2$	+	+	+	+
Sign of $\frac{(x-1)(x+2)}{(x-2)^2}$	+	-	+	+

the solution set is $\{x \mid x \leq -2 \text{ or } x \geq 1 \text{ and } x \neq 2\}$. Interval: $(-\infty, -2] \cup [1, 2) \cup (2, \infty)$.

Graph: -2 1 2

Question 8: (6 points) (1.8 Textbook Exercises 41-43): Find the solution set of the following inequalities

(a): $8-|2x-1| \ge 6$

(b): 7|x+2|+5>4

(c): $\frac{1}{2} \left| 4x + \frac{1}{3} \right| > \frac{5}{6}$

Solution:

- **41.** $8 |2x 1| \ge 6 \Leftrightarrow -|2x 1| \ge -2 \Leftrightarrow |2x 1| \le 2 \Leftrightarrow -2 \le 2x 1 \le 2 \Leftrightarrow -1 \le 2x \le 3 \Leftrightarrow -\frac{1}{2} \le x \le \frac{3}{2}$. Interval: $\left[-\frac{1}{2}, \frac{3}{2}\right]$.
- **42.** $7|x+2|+5>4 \Leftrightarrow 7|x+2|>-1 \Leftrightarrow |x+2|>-\frac{1}{7}$. Since the absolute value is always nonnegative, the inequality is true for all real numbers. In interval notation, we have $(-\infty, \infty)$.
- **43.** $\frac{1}{2}\left|4x+\frac{1}{3}\right| > \frac{5}{6} \Leftrightarrow \left|4x+\frac{1}{3}\right| > \frac{5}{3}$, which is equivalent to either $4x+\frac{1}{3} > \frac{5}{3} \Leftrightarrow 4x > \frac{4}{3} \Leftrightarrow x > \frac{1}{3}$; or $4x+\frac{1}{3} < -\frac{5}{3} \Leftrightarrow 4x < -2 \Leftrightarrow x < -\frac{1}{2}$. Interval: $\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{1}{3}, \infty\right)$.

Math 001 Test II, (Textbook: 1.1 to 2.5), Instructor: Sayed Omar, Term 181, Page 4 of 5

Question 9: (4 points) (2.1 Textbook Exercise 46): If $f(x) = \frac{1}{x+1}$, then find the difference quotient.

$$\frac{f(x+h) - f(x)}{h} , h \neq 0$$

Solution:

$$\frac{f(x+h)-f(x)}{h} = \frac{1}{h} \Big[f(x+h)-f(x) \Big] = \frac{1}{h} \Big[\frac{1}{x+h+1} - \frac{1}{x+1} \Big] = \frac{1}{h} \cdot \frac{x+1-x-h-1}{(x+h+1)(x+1)}$$
$$= \frac{1}{h} \cdot \frac{-h}{(x+h+1)(x+1)}$$
$$= \frac{-1}{(x+1)(x+h+1)}$$

Question 10: (6 points) (2.2 Textbook Exercises 45): Given $f(x) = \begin{cases} 4 & \text{if } x < -2 \\ x^2 & \text{if } -2 \le x \le 2 \\ -x + 6 & \text{if } x > 2 \end{cases}$

(a): Sketch the graph of the function..

(b): Find the range.

(c): Find the interval(s) where the function is increasing, decreasing or constant.

Solution:

(a):

(b): $Range = (-\infty, 4]$

(c): constant on $(-\infty, -2]$ dereasing on [-2, 0] and on $(2, \infty)$ increasing on [0, 2]

Math 001 Test II, (Textbook: 1.1 to 2.5), Instructor: Sayed Omar, Term 181, Page 5 of 5

Question 11: (5 points): (1.1 Textbook Exercises 12, 14, 16, 18 and 20): Sketch the regions given by each

(a):
$$\{(x,y)|y<3\}$$

(b):
$$\{(x,y)|0 \le y \le 2\}$$

(c):
$$\{(x,y)|xy>0\}$$

(d):
$$\{(x,y)|x<2 \text{ and } y \ge 1\}$$

(e):
$$\{(x,y) | -3 \le x \le 3 \text{ and } -1 \le y \le 1 \}$$

Solution:

(a):
$$\{(x,y)|y<3\}$$

(b):
$$\{(x,y)|0 \le y \le 2\}$$

(c):
$$\{(x,y)|xy>0\}$$

$$\{(x,y)|x<0 \text{ and } y<0 \text{ or } x>0 \text{ and } y>0\}$$

(d):
$$\{(x,y)|x<2 \text{ and } y \ge 1\}$$

(e): Sketch the regions given by each set

$$\{(x,y) | -3 \le x \le 3 \text{ and } -1 \le y \le 1 \}$$

