Question 1: Which one of following functions has an inverse?

(a)  $f(x) = x^2 + 5$ (b)  $f(x) = |x + 1| - 2, x \ge -2$ (c)  $f(x) = \sqrt{1 - x^2}$ (d)  $f(x) = (x + 3)^2 - 5, x \ge -3$ (e)  $f(x) = -x^2 + 4, x \le 1$ 

Question 2: For the following functions, find  $f^{-1}(x)$  and state its domain and range

(a) If  $f(x) = -\sqrt{4 - x^2}$  for  $-2 \le x \le 0$ (b) If  $f(x) = -2 + \sqrt{2 - x}$  for  $x \le 2$ (c) If  $f(x) = \frac{2x+3}{x-1}$ 

Question 3: If  $f(x) = -x^2 + 4x$ ,  $x \le 2$ , then  $f^{-1}(x)$  is (a)  $y = 2 \pm \sqrt{4 - x}$ ,  $x \le 4$ (b)  $y = 2 - \sqrt{x - 4}$ ,  $x \ge 4$ (c)  $y = 2 - \sqrt{4 - x}$ ,  $x \le 4$ (d)  $y = 2 + \sqrt{4 - x}$ ,  $x \le 4$ (e)  $y = 2 + \sqrt{x - 4}$ ,  $x \ge 4$ 

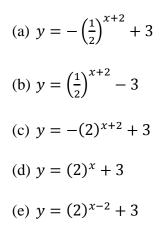
Question 4: Let  $f(x) = \frac{3x-k}{x-2}$  and  $f^{-1}(x)$  exists. If  $f^{-1}(-2) = 1$ , then the value of  $(fof)(1) + (f^{-1}of)(5) - f^{-1}(4)$  is

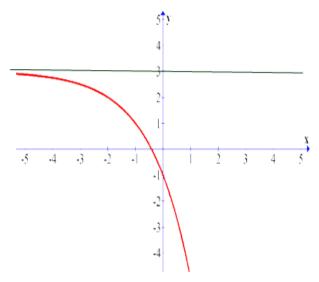
(a)  $\frac{1}{4}$  b)  $-\frac{1}{4}$  c) 5 d)  $\frac{55}{4}$ 

Question 5: If f(x) = ax + 1 and g(x) = 2x + b, where  $a, b \in R, a \neq 0$  are inverses of each other then find a + b.

Question 1: If the function  $y = 4^{x+2} - 5$  is written as  $y = k \left(\frac{1}{2}\right)^{bx} + c$ , then k + b + c =(a) 11 (b) 7 (c) 9 (d) 13 (e) 12

Question 2: Find the intersection points of the graphs of  $y = \left(\frac{1}{3}\right)^{2x+5}$  and y = 27


Question 3: If (a, 0) and (0, b) are the **x** any **y** intercepts of the graph  $y = (\sqrt[3]{5})^{-x} + c$  with horizontal asymptote  $y = -\frac{1}{5}$  then b - a =


(a) 4/5
(b) 3
(c) 5/2
(d) -11/5
(e) 19/5

Question 4: For  $f(x) = 2(2^{-|x|}) - 1$ (a) Graph *f* 

- (b) Find the asymptote and the range of f
- (c) Find the intervals for which the graph of f is below x-axis.

Question 5: The adjacent figure represents the graph of:





Question 1: If  $\log_{10} 2 = 0.30$ ,  $\log_{10} 3 = 0.48$ , then  $\log_{10} \left(\frac{9}{25}\right) =$ (a) -0.24 (b) -0.44 (c) 0.36 (d) -0.32 (e) -0.28

Question 2: Find the value of (a)  $\log_{1/2} \sqrt[3]{32} + \log_3 \frac{1}{\sqrt{27}}$  (b)  $(\frac{1}{25})^{1-2\log_5 2}$ 

Question 3: Write  $3 - 2\log_2 x - \frac{1}{2}\log_2 y$ , where x > 0, y > 0 as a single logarithmic expression.

Question 4: From the graph of  $y = \log_{1/2} x$ , solve the inequalities

(a)  $\log_{1/2} x > 1$ (b)  $\log_{1/2} x < -2$ 

Question 5: Find the domain of  $y = \log_2\left(\frac{|x-3|}{x^2+x-2}\right)$ 

Question 6: The graph of  $y = \log_3 |x - 3| - 1$  is below the x-axis on the intervals

- (a)  $(2, 3) \cup (3, 4)$
- (b)  $(-\infty, 0) \cup (6, \infty)$
- (c)  $(-1, 0) \cup (0, 1)$
- (d)  $(0, 3) \cup (3, 6)$
- (e) (−∞, 2) ∪ (3, ∞)

Question 1: If  $\log 2 = c$ , then  $\log_8 \sqrt[3]{10} =$ 

(a)  $\frac{1}{9c}$  (b)  $\frac{2}{3c}$  (c)  $\frac{c}{9}$  (d)  $\frac{1}{c}$  (e)  $\frac{3c}{2}$ 

Question 2: Find the value of (log<sub>5</sub> 20)(log<sub>20</sub> 60)(log<sub>60</sub> 100)(log<sub>100</sub> 125)

Question 3: Which one of the following statements is FALSE?

- (a)  $\ln(\log 10) = 0$
- (b)  $\log(\ln e^{100}) = 2$
- (c)  $\frac{1+\ln x}{-3\ln(\frac{1}{2})} = \log_8(ex), x > 0$

(d) 
$$e^{(3\ln 2 + 2\ln 3)} = 72$$

(e)  $\ln(x^2 - 4) = \ln(x - 2) + \ln(x + 2)$ , where x < -2 or x > 2

Question 4: If a > 0,  $a \neq 1$ , x > 0,  $x \neq 1$ , then simplify the expression

$$(\log_{\sqrt{10}} 1000)(\log_a \sqrt{x})(\log_{x^3} a)$$

Question 5: Write the expression as a single logarithmic term with base e:

$$3\ln x - \frac{\ln(x-3)}{2} + \log_{\sqrt{e}}(x+1) - 4$$
, where  $x > 3$ 

Question 1: The sum of all solutions to the equation  $\log_2 \sqrt{x} = \sqrt{\log_2 x}$  is

(a) 10 (b) 17 (c) 21 (d) 24 (e) 12

Question 2: The number of solutions of the equation  $\log(x^3) = (\log x)^2 + 2$  is equal to:

(a) 2 (b) 3 (c) 1 (d) 0 (e) 4

Question 3: The solution set of the equation  $\log \sqrt[3]{x^2 - 15x} = \frac{2}{3}$  consists of:

- (a) one positive and one negative integers
- (b) two positive integers
- (c) one positive integer only
- (d) two non-integer rational numbers
- (e) one negative integer only

Question 4: The equation  $\log(x + 4) = 1 - \log(x - 5)$  has

- (a) two positive real solutions
- (b) only one negative real solution
- (c) two negative real solutions
- (d) one positive and one negative real solutions
- (e) only one positive real solution

Question 5: Solve the following equations

(a)  $(\ln x)^2 + e^{\ln(-\ln x)} - 6\ln e^2 = 0$ (b)  $\frac{1-e^x}{2e^{-x}-2} = \frac{3}{2}$ (c)  $2^x - 2^{3-x} = 7$ (d)  $\frac{4^{x}+4^{-x}}{4^{x}-4^{-x}} = 3$ 

# Math 002 - Term 163

# Recitation (5.1)

# Question1.

If  $lpha\,$  is of the complement of the angle  $30.56^{\circ}$  and  $\,\beta\,$  is the supplement of the angle

 $40^\circ\,\,51\,27$  , then find the smallest positive angle coterminal with the angle

 $\beta - \alpha$  and write it as DMS.

# Question2.

a) Give two positive and two negative angles that are coterminal with  $41^{\circ}$ .

b) Find all coterminal angles of 65°.

# Question3.

If  $\alpha = 675^{\circ}$  and  $\theta = -330^{\circ}$  are two angles in standard position, then find the quadrant of  $2\alpha + \theta$ .

# Question4

A hard disk in a computer rotates at 300 revolutions per minute. Through how many degrees does a point on the edge of the disk move in 3 seconds?

A) 7200°

B) 6400°

C) 10800°

D) 5400°

E) 1800°

# Question5

In a right triangle, one angle is  $31^{\circ} 42^{\prime} 17^{\prime\prime}$ , the other acute angle is:

- A) 58° 17' 43"
  B) 58° 42' 17"
  C) 148° 17' 43"
- D) 58° 37<sup>′</sup> 48<sup>′′</sup>
- U) 38 37 48
- E) 59° 18' 43"

Math 002 - Term 163

Recitation (5.2)

## Question1:

Let  $\theta$  be an acute angle satisfying  $4\sin\theta = 5\cos\theta$ , then find the six trigonometric function values of the angle  $\theta$ .

# Question2:

If the terminal side of the angle  $\theta$  in standard position is defined by 3x + 2y = 0,  $x \le 0$ , then find  $\sec \theta$ .

# Question3:

Which of the following statement is possible?

a) 
$$\csc \theta = 0$$
  
b)  $\cos \theta = \frac{\pi}{2}$   
c)  $\sec \theta = \frac{1}{2}$  and  $\cos \theta = 2$   
d)  $\tan \theta = \frac{2}{3}$ ;  $\sin \theta = 2$  and  $\cos \theta = 3$   
e)  $\tan \theta = -\sqrt{3}$  and  $\csc \theta = -\frac{2\sqrt{3}}{3}$ 

# Question4:

a) If  $\sin \theta = \frac{1}{3}$  and P(-2, k) is a point on the terminal side of  $\theta$  in standard position, then find the value of k.

# Question5:

If  $cot^2\theta = 16$  and  $\theta$  terminates in the third quadrant, then  $\sec \theta =$ 

A) 
$$\sqrt{17}$$
 B)  $\frac{\sqrt{17}}{4}$  C)  $-\frac{\sqrt{17}}{4}$  D)  $-\frac{4}{\sqrt{17}}$  E)  $-\sqrt{17}$ 

## Math 002 - Term 163

## Recitation (5.3)

## Question1:

If  $\alpha$  is the reference angle of 675° and  $\beta$  is the least positive coterminal angle of  $-240^{\circ}$ , then find  $\alpha + \beta$ .

# Question2:

Find all values of  $\theta$  that has the given function value, if  $\theta$  is in the interval  $[0^{\circ}, 360^{\circ})$ .

a)  $\cos \theta = -\frac{\sqrt{2}}{2}$  b)  $\sin \theta = \frac{\sqrt{3}}{2}$  c)  $\tan \theta = -1$  d)  $\sec^2 \theta = 2$ 

# Question3:

Find the equation of the straight line passing through the origin and making an angle of  $60^{\circ}$  with positive direction of the x-axis.

# Question4:

Find the angle between the line x + y = -3 and the positive x-axis.

# Question5:

Find the exact value of the following expressions:

a)  $\csc(570^\circ) \sec(-480^\circ) + \tan(65^\circ) + \cot(155^\circ)$ 

b)  $4\sin(-510^{\circ})\cos(300^{\circ}) + \cot(199^{\circ}) - \tan(251^{\circ})$ 

# Question6:

If  $\tan(37^{\circ}) = t$ , then  $\tan 863^{\circ} + \tan 307^{\circ} = t$ 

A) zero

B) 
$$\frac{t^{2}+1}{t}$$
C) 
$$-\frac{(t^{2}+1)}{t}$$
D) 
$$\frac{(t^{2}-1)}{t}$$
E) 
$$\frac{(1-t^{2})}{t}$$

# Question 7:

If  $-45^{\circ} < \theta < 45^{\circ}$ , then

a)  $\sin(\theta + 45^\circ) < 0$  and  $\sec\frac{\theta}{2} > 0$  b)  $\sin(\theta + 45^\circ) > 0$  and  $\sec\frac{\theta}{2} < 0$ c)  $\sin(\theta + 45^\circ) > 0$  and  $\sec\frac{\theta}{2} > 0$  d)  $\sin(\theta + 45^\circ) < 0$  and  $\sec\frac{\theta}{2} < 0$ c)  $\tan\theta < 0$  and  $\sec\frac{\theta}{2} > 0$ 

e)  $\tan \theta < 0$  and  $\cos \theta > 0$ 

# Prep -Year Math Program

# Math 002 - Term 163

# Recitation (5.4)

Question1 An airplane is flying 300 feet above the groundlevel. If the angle of depression from

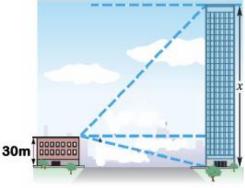
the plane to the base of a tree is  $\,30^\circ$  , then the horizontal distance the plane must fly to be directly over the tree is

# Question2

From a given point on the ground, a man finds

the angle of elevation to the top of a tree is equal to 60°. He moves back 50 ft and finds the angle of elevation to the top of the tree is equal to 30°. Find the height of the tree.

Question3 The angle of elevation from the top of a small building to the top of a taller building


is  $60^{\circ}$ , while the angle of depression to the bottom is  $30^{\circ}$ . If the shorter building is 30 m high, then the height of the taller building is

- A)  $(30 + 60\sqrt{3})m$
- в) 150 m
- C)  $100\sqrt{3} \text{ m}$
- D) 120m
- E)  $90\sqrt{3} \, \text{m}$

# Question4

If from the top of a tower 200 feet high, the angles of depression of the top and bottom of a building opposite to the tower are observed to be 30° and 60°, respectively, then the height of the building is

A)  $\frac{200\sqrt{3}}{3}$ B)  $\frac{400}{3}$ C)  $100 \sqrt{3}$ D)  $\frac{350}{3}$ E)  $\frac{400\sqrt{3}}{3}$ 





## **Prep -Year Math Program**

# Math 002 - Term 163

# Recitation (6.1)

## Question1

If  $\alpha$  is the largest negative angle with coterminal angle of measure  $\frac{39\pi}{4}$  and  $\beta$  is the reference angle of the angle of measure 30 radian, then find  $\alpha + \beta$ .

# Question2

Find the length of an arc that subtends a central angle of  $40^\circ\,15'$  in a circle of circumference  $30\pi$  cm.

# Question3

If the arc length  $\frac{4\pi}{3}$  cm subtends a central angle  $\theta$  in a circle with diameter 12 cm, find the degree measure of the angle  $\theta$ .

# Question4

A rope is being wound around a drum of radius 5 ft. How much rope will be wound if the drum is rotated through an angle of  $120^{\circ}$ .

# Question5

The radian measure of the reference angle of  $-2560^\circ\,\text{is}$ 

A) 
$$\frac{16\pi}{9}$$
  
B)  $-\frac{2\pi}{9}$   
C)  $\frac{5\pi}{18}$   
D)  $\frac{2\pi}{9}$ 

# Question6

If a point P lies on a circle of center O(0,0) and radius 4 units and the radius OP makes an angle of  $\frac{\pi}{4}$  with x-axis, then the coordinates of P =

- A)  $(1, \sqrt{2})$
- B) (4, 4)
- C)  $(2\sqrt{2}, 2\sqrt{2})$
- D)  $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
- E)  $(\sqrt{2}, \sqrt{2})$

## **Prep -Year Math Program**

## Math 002 - Term 163

## Recitation (6.2)

## Question1:

Find the exact value of the following:

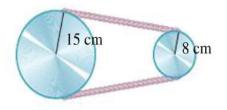
1) 
$$\cos\left(\frac{-7\pi}{6}\right) + \sin\left(\frac{17\pi}{3}\right) + 3\tan\left(\frac{5\pi}{4}\right)$$

2)  $csc(5\pi)$ 

3) 
$$2\sin\left(\frac{19\pi}{6}\right) - \cos(660^\circ)\tan\left(\frac{39\pi}{4}\right) + \sec\left(\frac{-71\pi}{6}\right).$$

## Question2

The Earth revolves on its axis once every 24 hr and its radius is 6.371 km. Find the linear speed of the earth.


## Question3

Each tire of a car has a radius of 40 cm. If the tires are rotating at 500 revolutions per minute, find the speed of the car in kilometers per hour.

## Question4

Two pulleys in the figure have radii of 15cm and 8 cm respectively. If the larger pulley rotates 50 times in a minute, then the angular speed of the smaller pulley in radians per second is

| $^{75\pi}$           | B) $\frac{25\pi}{8}$ | $^{75\pi}$           | $^{25\pi}$         | E) $\frac{375\pi}{2}$ |
|----------------------|----------------------|----------------------|--------------------|-----------------------|
| A) $\frac{75\pi}{4}$ | B) <u>8</u>          | C) $\frac{75\pi}{8}$ | $D) - \frac{1}{4}$ | E) 2                  |



# Question5

Cos(20) =

A) –  $\cos(20 - 6\pi)$ 

B) cos 70

C) -cos 70

D)  $\cos(20 - 6\pi)$ 

E)  $\sin(20 - 6\pi)$ 

## **Prep -Year Math Program**

Math 002 - Term 163

Recitation (6.3)

## Question1:

a) Find the interval(s) on which the function  $f(x) = -|cos\pi x|$ ,  $0 \le x \le 4$ , is increasing or decreasing.

b) Find the highest point of the function  $f(x) = -\frac{1}{5}\cos\left(\frac{\pi x}{2}\right)$  in the interval [0,4].

## Question2:

a) For  $-3\pi \le x \le 3\pi$ , find the interval in which the graph of the function

$$f(x) = -\frac{3}{2}\cos\frac{x}{3}$$

is above the *x*-axis.

b) Find the number of intersection points of the graphs of  $y = -|\sin \pi x|$  and  $y = -\frac{1}{2}$  over the interval  $\left[\frac{1}{2}, \frac{3}{2}\right]$ .

## Question3:

If cos3 = a and sin3 = b, then a - b =

A) a positive real number.

B) a negative real number.

C) zero.

D) undefined.

## Question4:

The number of zeros of the function  $f(x) = -2\sin\frac{4x}{3}$  in the interval  $\left[-\frac{3\pi}{2}, \frac{3\pi}{2}\right]$  is:

- A) 1
- B) 2
- C) 3
- D) 4
- E) 5

#### **Prep -Year Math Program**

## Math 002 - Term 163

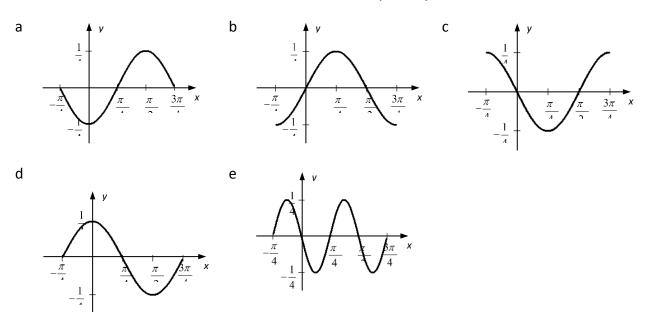
## Recitation (6.4)

## Question1:

Find the period, the phase shift and the range of  $y = -1 + \frac{1}{4}\cos(3x - 2\pi)$ .

## Question2:

Find the number of *x*-intercepts of the function  $f(x) = 1 + \sqrt{2} \sin(\frac{x}{2} + \pi)$  in the interval  $(-4\pi, 0)$ .


## Question3:

If *A* is the amplitude, *P* is the period, *M* is the maximum value and m is the minimum value of the function  $f(x) = -3\sin(2\pi x - 1) + 5$ , then  $\frac{A+P}{M+m} =$ 

A) 3 B)  $\frac{2}{5}$  C)  $\frac{11}{10}$  D)  $\frac{7}{10}$  E)  $\frac{9}{5}$ 

## Question4:

Which one of the following is the graph of  $y = \frac{1}{4}\cos 2\left(x + \frac{\pi}{4}\right)$  over one period?



#### **Prep**-Year Math Program

#### Math 002 - Term 163

#### **Recitation (6.5)**

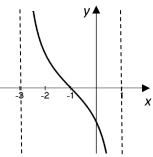
#### Question1:

Find the interval(s) on which the function  $y = \tan|x|, -\frac{3\pi}{2} \le x \le \frac{3\pi}{2}$ , is above the *x*-axis.

#### Question2:

- a) Find all vertical asymptotes of the graph of  $y = 3 \tan\left(\frac{x}{3} \frac{\pi}{6}\right)$ , for  $-6\pi \le x \le 6\pi$ .
- b) Find the number of vertical asymptotes of the graph of the function  $y = \frac{1}{2}cot(2x 3\pi)$  in the interval  $\left[\frac{\pi}{4}, \frac{7\pi}{4}\right]$ .

#### **Question3:**


The intersection point(s) between the graph of  $y = \cot(2x + \frac{\pi}{3})$  and the x-axis over the interval  $\left(\frac{\pi}{12}, \frac{4\pi}{3}\right)$ :

A)  $\frac{7\pi}{12}$  B)  $\frac{13\pi}{12}$  C)  $\frac{\pi}{12}$ ,  $\frac{7\pi}{12}$  D)  $\frac{7\pi}{12}$ ,  $\frac{13\pi}{12}$  E)  $\frac{\pi}{12}$ ,  $\frac{13\pi}{12}$ 

#### **Question4:**

The graph below can be represented by the trigonometric function

A)  $f(x) = -2\tan\left(\frac{\pi}{4}x + \frac{\pi}{4}\right)$  B)  $f(x) = 2\tan\left(\frac{\pi}{4}x + \frac{\pi}{4}\right)$ C)  $f(x) = 2\cot\left(\frac{\pi}{4}x + 1\right)$  D)  $f(x) = -2\tan(x+1)$ E)  $f(x) = 2\cot(x+1)$ 



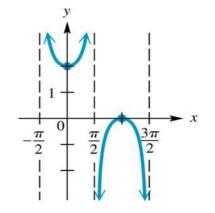
#### **Prep**-Year Math Program

Math 002 - Term 163

Recitation (6.6)

#### Question1

Find the range of the function  $y = 2 - 3\csc(\frac{\pi}{2}x + 4)$ .


#### Question2

Find the number of intersection points of the graph of  $y = \left| 3sec \frac{2x}{3} \right|$  and the line

y = 4 over the interval  $[0, \frac{9\pi}{4}]$ .

#### Question3

Write an equation of a function for the given graph



#### **Question4**

For  $\frac{\pi}{2} \le x \le \frac{9\pi}{2}$ , the graph of the function  $y = \csc\left(\frac{x}{2} - \frac{\pi}{4}\right)$  is decreasing on the interval(s)

a) 
$$\left(\frac{3\pi}{2}, \frac{5\pi}{2}\right) \cup \left(\frac{5\pi}{2}, \frac{7\pi}{2}\right)$$
 b)  $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \cup \left(\frac{7\pi}{2}, \frac{9\pi}{2}\right)$  c)  $\left(\frac{\pi}{2}, \frac{5\pi}{2}\right)$   
d)  $\left(\frac{5\pi}{2}, \frac{9\pi}{2}\right)$  e)  $\left(\frac{\pi}{2}, \frac{9\pi}{2}\right)$ 

#### Question5

Which one of the following is TRUE about the graph of

 $y = -\sec(2x + \pi) + 2$ ,  $\frac{-3\pi}{4} \le x \le \frac{3\pi}{4}$ 

a) Three *x*-intercepts b) Three vertical asymptotes c) No *y*-intercept

d) Two vertical asymptotes e) Four x -intercepts

#### Question6

How many intersection points are there between

- a) The graph of y = secx and the line y = 0.
- b) The graph of y = secx + 1 and the line y = 0.

#### **Prep**-Year Math Program

#### Math 002 - Term 163

#### Recitation (7.1)

#### Question1

If  $A = 2\sin^2 2x + 2\cos^2 2x$  and  $B = 3[\sec^2(-x) - \tan^2(-x)]$ , find A + B.

## Question2

Find the value of  $cos44^{\circ} - sin134^{\circ}$ .

## **Question3**

For  $\pi < x < \frac{3\pi}{2}$  ,  $\mathit{cotx} =$ 

a) 
$$-\frac{\cos x}{\sqrt{1-\cos^2 x}}$$
 b)  $\frac{\cos x}{\sqrt{1-\cos^2 x}}$  c)  $\frac{\cos x}{\sqrt{\cos^2 x-1}}$ 

d) 
$$\frac{\sqrt{1-\cos^2 x}}{\cos x}$$
 e)  $-\frac{\sqrt{1-\cos^2 x}}{\cos x}$ 

#### **Question4**

 $sec^2x(1+sinx)^2 =$ 

a)  $\frac{\sec x \csc x+1}{\sec x \csc x-1}$  b)  $\frac{\sec x + \csc x}{\sec x + \csc x}$  c)  $\frac{\csc x+1}{\csc x-1}$  d)  $\frac{1}{\csc x-1}$  e)  $\frac{\csc x+1}{\csc x}$ 

#### Question5

If 
$$sec\theta = \frac{x+4}{x}$$
, then  $csc\theta =$   
a)  $\pm \frac{(x+4)\sqrt{2x+4}}{4(x+2)}$  b)  $\pm \frac{(x+4)\sqrt{x+2}}{8(x+2)}$  c)  $\pm \frac{\sqrt{2x+4}}{(x+4)}$ 

d) 
$$\pm \frac{(x+4)\sqrt{x+2}}{2x+4}$$
 e)  $\pm \frac{2\sqrt{x+2}}{x+4}$ 

#### Question6

Which one of the following is **NOT** an identity

a.  $tan^{2}(-x) - cos^{2}(x) - sin^{2}(-x) = 2 - sec^{2}x$ b.  $\frac{secx}{cscx} = tanx$ c. tanx + cotx = secx cscxd.  $tan^{2}x + sin^{2}x + cos^{2}x = sec^{2}x$ 

Math 002 - Term 163

Recitation (7.2)

#### Question1

If  $\frac{sinx+cscx cos^2 x+1}{secx cscx-tanx} = A secx + B tanx$ , find the value of A + B.

#### Question2

Simplify:

# $\frac{\frac{1}{\cos x} + \sec x}{\frac{1}{\cos x} - \cos x}$

#### Question3

Verify  $\frac{\cos x \sec x + 2 \cos x - \sec x - 2}{\sec x + 2} = \cos x - 1.$ 

#### Question4

If  $sin^4x - cos^4x = m sin^2x + n$ , find 2mn.

#### Question5

If  $A = (sinx + cscx)^2$ ,  $B = (cosx + secx)^2$  and  $C = -tan^2x - cot^2x - 2$ . Then A + B + C =

a) 5 b) 1 c) 7 d) -5 e) -1

#### **Question6**

If  $\alpha = \frac{sin\theta}{1-cot\theta}$  and  $\beta = \frac{cos\theta}{1-tan\theta}$  then  $\alpha + \beta =$ 

- a)  $sin\theta + cos\theta$  b)  $sin\theta cos\theta$  c)  $sec\theta + csc\theta$
- d)  $sec\theta csc\theta$  e)  $tan\theta + cot\theta$

## Math 002 - Term 163

#### Recitation (7.3)

#### Question1

Find the value of

a)  $\sin(-15^{\circ})$  b)  $\cos(\frac{13\pi}{12})$  c)  $\tan(\frac{17\pi}{12})$ 

#### **Question2**

Find a value of  $\theta$  that satisfies:  $\tan(3\theta + 10^{\circ}) = \cot(2\theta - 20^{\circ})$ .

#### Question3

Find the value of

a)  $\frac{\sin 105^{\circ}}{\cos 165^{\circ}}$  b)  $\frac{\tan 70^{\circ} + \cot 10^{\circ}}{1 - \tan 80^{\circ} \cot 20^{\circ}}$ 

#### **Question4**

If D is the distance between the two points P(cosx, sinx) and Q(cos2x, sin2x), then  $D^2 =$ 

a) 2 + 2cosx b) 2 - 2cosx c) -2 + 2cosx

d)  $-2 - 2\cos 3x$  e)  $2 - 2\cos 3x$ 

#### Question5

If  $\alpha$  and  $\beta$  are two angles in standard position with

 $sin \alpha = \frac{4}{5}$ ,  $\frac{\pi}{2} < \alpha < \pi$  and  $cos \beta = \frac{-5}{13}$ ,  $\pi < \beta < \frac{3\pi}{2}$ 

Then the terminal side of  $(\alpha + \beta)$  is in the quadrant(s)

a) I b) II c) IV d) I or II e) II or III

## Math 002 - Term 163

#### Recitation (7.4)

#### Question1

If  $A = \frac{\sin 22.5^{\circ} \cos 22.5^{\circ}}{(\cos 15^{\circ} + \sin 15^{\circ})(\cos 15^{\circ} - \sin 15^{\circ})}$  and  $B = \cos^2 \frac{\pi}{8} - \frac{1}{2}$ , find AB.

## Question2

If 
$$\frac{\sin^3 x + \cos^3 x}{\sin x + \cos x} = 1 + n \sin(mx)$$
, find  $m + n$ .

## Question3

If  $cos3x = A cos^3x + B cosx$ , find 2A - B.

#### Question4

Find the range of the function  $f(x) = 6 - 24sin4x \cos 4x \sin 8x$ .

## Question5

If  $cos^4x = acos4x + bcos2x + c$ , find a + b + c.

# Question6

If 
$$A = \sqrt{\frac{1+\cos 320^{\circ}}{2}}$$
 and  $B = \sqrt{\frac{1-\cos 320^{\circ}}{2}}$ , then  $A + B =$   
a)  $\cos 160^{\circ} - \sin 160^{\circ}$  b)  $-\cos 160^{\circ} + \sin 160^{\circ}$   
c)  $\cos 160^{\circ} + \sin 160^{\circ}$  d)  $-\cos 160^{\circ} - \sin 160^{\circ}$  e) 0

#### Question7

 $cos13^{\circ}cos9.5^{\circ} - sin13^{\circ}sin9.5^{\circ} =$ 

a) 
$$\frac{1}{2}\sqrt{2+\sqrt{2}}$$
 b)  $\frac{1}{2}\sqrt{2-\sqrt{2}}$  c)  $\frac{1}{2}\sqrt{\sqrt{2}-2}$   
d)  $\frac{-1}{2}\sqrt{2}$  e)  $\frac{1}{2}\sqrt{2}$ 

## Math 002 - Term 163

#### Recitation (7.5)

# Question1

Find the exact value of

a) 
$$\cos^{-1}(\cos\frac{3\pi}{5})$$
 b)  $\sin^{-1}(\cos\frac{5\pi}{4})$  c)  $\tan^{-1}(\tan\frac{4\pi}{3})$  d)  $\sec(\sec^{-1} 2)$ 

## Question2

Find the exact value of  $\sin^{-1}\left[\sin\frac{3\pi}{5}\right] - \tan\left[2\cos^{-1}\frac{1}{4}\right]$ .

## **Question3**

Find the range of  $y = -\cos^{-1}(2 - 7x) + \pi$ .

## Question4

The domain of  $y = 2 \sin^{-1} \frac{x}{3}$  lies in the interval

a) 
$$[-1,1]$$
 b)  $[-2,2]$  c)  $[-3,3]$  d)  $[-6,6]$  e)  $[-\frac{1}{3},\frac{1}{3}]$ 

#### **Question5**

$$\cos^{-1}(-\frac{1}{2}) + \sin^{-1}\left[\sin\frac{-2\pi}{3}\right] =$$

a) 
$$\pi$$
 b) 0 c)  $\frac{5\pi}{3}$  d)  $\frac{\pi}{6}$  e)  $\frac{\pi}{3}$ 

## **Question6**

$$\tan[2\cos^{-1}(-\frac{4}{5})] =$$
a)  $\frac{-24}{7}$  b)  $\frac{-25}{24}$  c)  $\frac{25}{24}$  d)  $\frac{7}{24}$  e)  $\frac{24}{7}$ 

# Question7

Which one of the following functions is odd, even or neither

a) 
$$y = \sin^{-1} x$$
 b)  $y = \cos^{-1} x$  c)  $y = \tan^{-1} x$   
d)  $y = \cot^{-1} x$  e)  $y = \sec^{-1} x$  f)  $y = \csc^{-1} x$ 

Math 002 - Term 163

Recitation (7.6)

# Question1

Find the number of solutions of the equation

 $2sin^3x = sinx$  in the interval  $[0^\circ, 360^\circ)$ .

# Question2

Find the sum of all solution(s) of the equation

$$sin2x + \sqrt{3}$$
  $cosx + 2sinx + \sqrt{3} = 0$  in the interval  $[0^{\circ}, 270^{\circ})$ .

# Question3

The number of solutions of the equation

 $4sinx \ cosx = \sqrt{3}$  in the interval  $[0^{\circ}, 180^{\circ})$  is

a) 4 b) 5 c) 3 d) 2 e) 1

# Question4

The sum of all solution(s) of the equation

$$sinx = cos \frac{x}{2}$$
 in the interval  $[0^{\circ}, 270^{\circ})$  is

a)  $\pi$  b) 3  $\pi$  c)  $\frac{4\pi}{3}$  d)  $\frac{\pi}{3}$  e)  $\frac{8\pi}{3}$ 

# Question5 [Use the Reduction Identity]

The number of solution(s) of

$$\frac{1}{cscx} - \sqrt{3}\cos x = 1$$
,  $0 \le x < 2\pi$ , is

Math 002 - Term 163

Recitation (7.7)

#### Question1

Find the exact value of  $\csc\left[\tan^{-1}\left(\frac{4}{3}\right) - \cos^{-1}\left(\frac{12}{13}\right)\right]$ .

#### Question2

If u > 0, then find the exact value of  $\sec\left[\cot^{-1}\frac{\sqrt{4-u^2}}{u}\right]$ .

## Question3

 $\sin^{-1}(\frac{3}{5}) + \cos^{-1}(-\frac{4}{5}) =$ 

a)  $\pi$  b)  $\frac{\pi}{2}$  c)  $\frac{3\pi}{2}$  d)  $\frac{7}{5}$  e)  $\frac{-1}{5}$ 

#### Question4

The sum of all solution(s) of  $\sin^{-1} x + \tan^{-1} x = 0$  is

a) 0 b) 1 c) -1 d)  $\pi$  e) 2  $\pi$ 

#### Question5

The solution of  $\sin^{-1} 2x + \cos^{-1} x = \frac{\pi}{6}$  satisfies the **inequality** 

a) -1 < x < 0b) 0 < x < 1c) 1 < x < 2d) -2 < x < -1e) 2 < x < 3

Math 002 - Term 163

Recitation (8.3)

## Question1

\_Are the vectors  $\vec{u} = \langle 2\cos 85^{\circ}, 2\sin 85^{\circ} \rangle$  and  $\vec{v} = 3 \langle \cos 25^{\circ}, \sin 25^{\circ} \rangle$  orthogonal?

## Question2

Let  $\vec{u} = 2i - 4j$  and  $\vec{w} = 3i - 3j$ 

- a) Find a unit vector in the opposite direction of  $\vec{u}$ .
- b) Find a vector of magnitude 2 in the direction of  $\overrightarrow{w}$ .

# Question3

Find the value of k such that the two vectors  $\vec{u} = < 3,4 >$  and  $\vec{v} = < 2, k >$  have the same direction.

# Question4

If  $\vec{u}$  and  $\vec{v}$  are unit vectors and the angle between  $\vec{u}$  and  $\vec{v}$  is  $120^{\circ}$ , find  $|\vec{u} - \vec{v}|$ .

# Question5

Let  $\theta = \cos^{-1}\left(-\frac{3}{5}\right)$  be the direction angle of a vector  $\vec{u}$ . If |u| = 20, then the vertical component of  $\vec{u}$  is equal to:

a) 16 b) -16 c) 12 d) -12 e) 4

# Question6

If  $\vec{u} = \langle -2,7 \rangle$ , then a nonzero vector that is perpendicular to  $\vec{u}$  is:

a) < 14,4 > b < -1,1 > c < 2,-7 > d < 1,-1 > e < 7,-2 >

## **Prep-Year Math Program**

## Math 002 - Term 163

#### **Recitation (9.1)**

## **Question1**

Assuming that the following system is dependent, find the sum of a and b.

$$\begin{cases} \frac{3}{2}x - \frac{1}{3}y = \frac{b}{7} \\ \frac{a}{4}x - y = 2 \end{cases}$$

#### **Question2**

If the system of linear equations

$$\begin{cases} -4x + 4y + 3 = 0\\ 2x - ky + 2 + k = 0 \end{cases}$$

is inconsistent, then k =

a) 2 b) 3 c) 4 d) 5 e) 6

## **Question3**

If (a, b) is the solution of the equation (1 + 3i)x + (5 - 2i)y = 20 + 9i, then ab = a) 10 b) 12 c) -3 d) -14 e) 15

## **Question4**

Find an equation of the parabola in the form  $y = ax^2 + bx + c$ , that passes through the points (0, -1), (1, 2) and (3, 4).

# Question5

Solve the following system of equations

$$\begin{cases} \cos x + \sqrt{3}\sin x = 2\\ \sin x - \sqrt{3}\cos x = 0 \end{cases}$$

## **Prep-Year Math Program**

## Math 002 - Term 163

## **Recitation (9.2)**

## **Question1**

Using Gauss-Jordan Method, solve the following linear system

$$\begin{cases} 4x - 2y + z = 13 \\ x + y + z = -2 \\ 4x + 2y + z = 1 \end{cases}$$

## **Question2**

Show that the following linear system is inconsistent

$$\begin{cases} 5x + 3y - z &= 1\\ 4x + 3y - 2z &= 1\\ x + z &= 2 \end{cases}$$

## **Question3**

Show that the following linear system is dependent and find all of its solutions

$$\begin{cases} x + 2y + z = 1\\ 5x + 2y + 3z = 4\\ 3x - 2y + z = 2 \end{cases}$$

## **Question4**

Solve the following system of equations

$$\begin{cases} x - \frac{1}{y} + \frac{2}{z} = 1\\ 3x + \frac{2}{y} + \frac{4}{z} = 4\\ \frac{1}{y} + \frac{2}{z} = 5 \end{cases}$$
  
a) (0, 1, 3) b) (1, -1, -2) c) (-2, 1, 3) d) (-2, 1, \frac{1}{2}) e) (-2, \frac{1}{3}, \frac{1}{2})

.

## **Question5**

If the echelon form of the linear system

$$\begin{cases} x - 3y + z = 8\\ 2x - 5y - 3z = 6\\ x - 6y + 7z = -7 \end{cases}$$
 is 
$$\begin{bmatrix} 1 & -3 & 1 & 8\\ 0 & 1 & m & n\\ 0 & 0 & 1 & p \end{bmatrix}$$
, then  $(m, n, p) =$ 

a) 
$$(-5, -10, 5)$$
 b)  $(3, -6, -3)$  c)  $(-5, 10, -3)$  d)  $(-2, 7, -1)$  e)  $(-3, 6, -2)$ 

# **Prep-Year Math Program**

# Math 002 - Term 163

## **Recitation (9.3)**

# Question1

If 
$$A = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 6 & 2 & 2 \\ 1 & 1 & -2 & 3 \end{bmatrix}$$
 and  $B = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 3 & 0 & 1 & -1 \\ -1 & 2 & -2 & 1 \\ -3 & 2 & 3 & 2 \end{bmatrix}$ , then

a) Find the sum of the cofactors of  $A_{23} \mbox{ and } B_{44}$  .

b) Find |A|.

# **Question2**

Evaluate the following determinants

a) 
$$\begin{vmatrix} 3 & 5 \\ 2 & 4 \end{vmatrix}$$
 b)  $\begin{vmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 3 & -2 \end{vmatrix}$  c)  $\begin{vmatrix} 3 & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 2 & 2 \end{vmatrix}$   
d)  $\begin{vmatrix} 4 & 0 & 2 & 1 \\ 5 & 0 & 4 & 2 \\ 2 & 0 & 3 & 4 \\ 1 & 0 & 2 & 3 \end{vmatrix}$  e)  $\begin{vmatrix} 5 & -13 & -3 \\ -2 & 5 & 1 \\ -2 & 6 & 2 \end{vmatrix}$ 

# Question3

If 
$$A = \begin{bmatrix} 4 & -1 \\ 6 & 2 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -3 & 2 \\ -2 & 2 \end{bmatrix}$ , then find  $|A^2B^3|$ .

# Question4

Solve the equation 
$$det(M - xI) = 0$$
, given that  $M = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$  and  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$   
a) 1 b) 2 c) 3 d) -1 e) -1/2

## **Prep-Year Math Program**

## Math 002 - Term 163

#### Recitation (9.5)

## **Question1**

The following system of non-linear equations

$$\begin{cases} 5x^2 + 3y^2 = 23\\ x^2 - y^2 = 3 \end{cases}$$

has:

- a) No solutions
- b) One solution
- c) Two solutions
- d) Three solutions
- e) Four solutions

# **Question2**

Solve the following system

$$\begin{cases} 2x^{2} + xy + y^{2} = 4\\ 3x^{2} + 2xy + y^{2} = 4 \end{cases}$$

## **Question3**

Find the point(s) of intersection of the circle  $(x - 1)^2 + (y - 2)^2 = 8$  and the line y = 2x + 2.

## **Question4**

Find the solution set of the system

$$\begin{cases} \frac{3}{x} + \frac{1}{y} = 4\\ \frac{9}{x} + \frac{5}{y} = 16 \end{cases}$$

#### **Question5**

The following system

$$\begin{cases} |x+1| - y = 3 \\ 2x - 3|y| = 7 \end{cases}$$

has:

## **Prep-Year Math Program**

# Math 002 - Term 163

## **Recitation (9.7)**

## **Question1**

If 
$$A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 1 & 2 \\ 2 & 1 & -3 \end{bmatrix}$$
 and  $B = \begin{bmatrix} -1 & -2 & 0 \\ 0 & -1 & 3 \\ 3 & 1 & 2 \end{bmatrix}$ , then find  
a)  $A + B$   
b)  $A - B$   
c)  $AB$   
d)  $A^2$ 

## **Question2**

If 
$$A = \begin{bmatrix} 1 & x \\ y & 0 \end{bmatrix}$$
, the set of all real solutions of  $A^2 - A = I_2$ , is  
a) {(1, 2)}  
b) {(-1, -2)}  
c) {(c, 2c)/c \in \mathbb{R}}  
d) {(c, -c)/c \in \mathbb{R}}  
e) {( $c, \frac{1}{c}$ )/c  $\in \mathbb{R}^*$ }

## **Question3**

If 
$$A = \begin{bmatrix} 1 & 3 & 4 \\ -2 & 2 & 5 \\ 1 & 3 & 2 \end{bmatrix}$$
,  $B = \begin{bmatrix} 6 & 0 & 2 \\ 0 & 1 & 3 \\ -1 & 2 & 5 \end{bmatrix}$ , and  $D = AB$ , then  $D_{32} + D_{13} =$ 

a) 52 b) 11 c) 38 d) -15 e) 9

# **Question4**

If  $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & 0 & 5 \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \end{bmatrix}$ , then find the matrix *X* that satisfies 4X + B = 2X + 3A.

# Question5

If 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$
,  $B = \begin{bmatrix} 2 & 3 & 5 \\ 0 & -4 & 2 \\ 0 & 0 & -3 \end{bmatrix}$ , and  $C = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ , then find  
a) AB  
b) BA  
c) AC

#### **Prep-Year Math Program**

#### Math 002 - Term 163

## **Recitation (9.8)**

#### **Question1**

(a) Find the inverse of *A* if  $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 6 \end{bmatrix}$ (b) Show that  $B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$  does not have an inverse.

#### **Question2**

Use the inverse of the coefficient matrix to solve the following system  $\begin{cases}
2x + y = -7 \\
3x + 2y = 19
\end{cases}$ 

#### **Question3**

Given that  $M = \begin{bmatrix} 2 & 9 \\ 1 & 5 \end{bmatrix}$  and  $N = \begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$ , find the sum of the elements in the second column of  $(MN)^{-1}$ .

#### **Question4**

If A and B are 3x3 matrices such that |A| = 5 and |B| = -2, then  $|3(A B^2)^{-1}| =$ a) 27/20 b) 15/10 c) -30/4 d) 10/27 e) 540

#### **Question5**

Let *A* and *B* be 4x4 invertible matrices. Which of the following statements are FALSE?

a) 
$$|A^{2}| = |A|^{2}$$
  
b)  $|(AB)^{-1}| = \frac{1}{|A| \cdot |B|}$   
c)  $|(2AB)^{-1}| = \frac{16}{|A| \cdot |B|}$   
d)  $A \cdot A^{-1} = B \cdot B^{-1}$   
e)  $|2B| = 16|B|$   
f)  $|A \cdot B| = |A| \cdot |B|$ 

g) |A + B| = |A| + |B|

## Question1

Which one of the following is the equation in standard form of the parabola with directrix y = 7 and focus (1,3)?

a) 
$$y-5 = -\frac{1}{8}(x-1)^2$$
  
b)  $x-5 = -\frac{1}{8}(x-1)^2$   
c)  $y-5 = \frac{1}{8}(x-1)^2$   
d)  $x-1 = \frac{1}{8}(y-4)^2$   
e)  $y-5 = \frac{1}{4}(x-1)^2$ 

## Question2

Find the equation in standard form of the parabola that has vertex (2, -1), has its axis of symmetry parallel to the x – axis, and passes through the point (3, 3).

#### Question3

Find the vertex, focus, and directrix of the parabola given by the equation:

$$3x^2 - 12x - y + 14 = 0$$

## Question4

Which of the following points lies on the parabola that has vertex (2, 1) and

focus (2, 3)?

- A) (4,2) B) (6,3) C) (5,3)
- D) (1,-3) E) (-1,3)

## **Question5**

Find the vertex, focus, directrix and axis of symmetry of the parabola given by the equation  $3y^2 + 18y - x + 7 = 0$ .

#### **Prep-Year Math Program**

#### Math 002 - Term 163

#### **Recitation (10.2 & 10.3)**

#### **Question1**

Find the center, the vertices, foci, and eccentricity of the ellipse given by the equation

- a)  $3x^2 + 2y^2 6x + 12y = -15$
- b)  $3y^2 + 2x^2 6y + 12x = -15$

## **Question2**

- 1) Find the equation of the ellipse that has vertices at (3,8) and (3,-2), and foci at (3,6) and (3,0).
- 2) Find the equation in standard form, of the ellipse with foci at (-1,2) and (3,2) that passes through the point (3,5).

## **Question3**

Find the points of intersection of the ellipse  $\frac{(x+1)^2}{16} + \frac{(y-2)^2}{9} = 1$ , and the hyperbola  $\frac{(x+1)^2}{16} - \frac{(y-2)^2}{9} = 1$ .

## **Question4**

Find the eccentricity of the hyperbola with asymptotes  $y = \pm \frac{4}{5}x + 5$  and one vertex at (5,5).

a)  $\frac{\sqrt{41}}{5}$  b)  $\frac{\sqrt{35}}{5}$  c)  $\frac{3}{2}$  d)  $-\frac{5}{2}$  e)  $\frac{1}{3}$ 

#### **Question5**

Find the equation in standard form of the hyperbola with vertices (-1,0) and (-1,-4), and eccentricity  $e = \frac{\sqrt{5}}{2}$ .

#### **Question6**

Write the following equations in standard form and identify the corresponding conics

- a)  $x^2 4x + y^2 + 2y + 2 = 0$
- b)  $2x^2 8x 2y^2 4y = 0$
- c)  $27x^2 + 36y^2 + 18x + 36y 96 = 0$