King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 001 Class Test II
Textbook Sections: 1.1 to 2.5
Term 161

Time Allowed: 90 Minutes

Time: 5:30 pm – 7:00 pm

Student's Name:		
ID #:	Section:	Serial Number:

Provide neat and complete solutions.

Show all necessary steps for full credit and write the answer in simplest form.

No Calculators, Cameras, or Mobiles are allowed during this exam.

Question	Points	Student's Score
1	4	
2	4	
3	4	
4	4	
5	4	
6	4	
7	4	
8	4	
9	6	
10	4	
11	4	
12	4	
Total	50	50
		100

Q1. (4 points) (1.1 Textbook Exercise 58): If -x = (5x + 3)(3k + 1), then x = ? Solution:

58.
$$-x = (5x+3)(3k+1)$$
$$-x = 15xk + 5x + 9k + 3$$
$$-6x - 15xk = 9k + 3$$
$$(-6-15k)x = 9k + 3$$
$$x = \frac{9k+3}{-6-15k} = \frac{3(3k+1)}{-3(2+5k)}$$
$$= -\frac{3k+1}{5k+2}$$

Q2. (4 points): Determine whether each of following equations is an **identity**, a **conditional** equation, or a **contradiction**. Show your work.

a)
$$(x-2)^2 = x^2 - 4$$
 Answer:

b)
$$(2x-3)^2 - 3x = (4x-3)(x-3)$$
 Answer:

c)
$$4(x+7) = 2(x+12) + 2(x+1)$$
 Answer:

d)
$$\frac{3x}{x-2} = \frac{6}{x-2}$$
 Answer:

Solution: a)
$$(x-2)^2 = x^2 - 4$$
 conditional equation Because:

$$(x-2)^{2} = x^{2} - 4$$

$$x^{2} - 4x + 4 = x^{2} - 4$$

$$-4x = -8$$

$$x = 2$$

b)
$$(2x-3)^2 - 3x = (4x-3)(x-3)$$
 identity Because:

$$(2x-3)^2 - 3x = (4x-3)(x-3)$$

$$4x^2 - 12x + 9 - 3x = 4x^2 - 15x + 9$$

$$4x^2 - 15x + 9 = 4x^2 - 15x + 9$$

$$0 = 0$$

c)
$$4(x + 7) = 2(x + 12) + 2(x + 1)$$
 [contradiction] Because:

35.
$$4(x+7) = 2(x+12) + 2(x+1)$$

 $4x + 28 = 2x + 24 + 2x + 2$
 $4x + 28 = 4x + 26$
 $28 = 26$

d)
$$\frac{3x}{x-2} = \frac{6}{x-2}$$
 [contradiction] Because:

$$\frac{3x}{x-2}(x-2) = \frac{6}{x-2}(x-2) \implies 3x = 6 \implies x = 2 \text{ is rejected} \implies SS = \emptyset$$

Math 001 Test II, (Textbook: 1,1 to 2.5) Instructor: Sayed Omar, Term 161 Page 2 of 6

Q3. (4 points): If the equation 4[3(x-5)+a]=(a+5)x-32 is an identity, then find the value of a.

Solution:

$$4[3(x-5)+a] = (a+5)x - 32$$

$$4[3x-15+a] = (a+5)x - 32$$

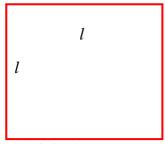
$$12x - 60 + 4a = (a+5)x - 32$$

$$12x + 4a = (a+5)x - 32 + 60$$

$$12x + 4a = (a+5)x + 28 \implies 12 = a+5 \text{ and } 4a = 28 \implies a = 7$$

Q4. (4 points) (1.2 Recitation Q#5): If the length of each side of the original square is decreased by 4 inches, the perimeter of the new square is 14 inches more than half the perimeter of the original square. What are the dimensions of the original square?

Solution: l = Length of the original rectangle in inches



$$l-4$$
 $l-4$

Side is decreased 4

Original square

$$P_{new} = 14 + \frac{1}{2}P_{original}$$

$$4(l-4) = 14 + \frac{1}{2}(4l)$$

$$4l - 16 = 14 + 2l$$

$$2l = 30 \implies l = 15 \text{ inches}$$

The original square is 15 by 15 inches.

Q5. (4 points) (1.4 Textbook Exercise 79b): Solve $4x^2 - 2xy + 3y^2 = 2$ for y = ?

Solution:

$$3y^{2} - (2x)y + (4x^{2} - 2) = 0$$

$$a = 3, b = -2x, \text{ and } c = 4x^{2} - 2$$

$$y = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-2x) \pm \sqrt{(-2x)^{2} - 4(3)(4x^{2} - 2)}}{2(3)}$$

$$= \frac{2x \pm \sqrt{4x^{2} - 12(4x^{2} - 2)}}{6}$$

$$= \frac{2x \pm \sqrt{4x^{2} - 48x^{2} + 24}}{6}$$

$$= \frac{2x \pm \sqrt{24 - 44x^{2}}}{6} = \frac{2x \pm \sqrt{4(6 - 11x^{2})}}{6}$$

$$= \frac{2x \pm 2\sqrt{6 - 11x^{2}}}{6} = \frac{x \pm \sqrt{6 - 11x^{2}}}{6}$$

Math 001 Test II, (Textbook: 1,1 to 2.5) Instructor: Sayed Omar, Term 161 Page 3 of 6

Q6. (4 points) (1.6 Textbook Exercise 51): Find the solution set of $8(x-4)^4 - 10(x-4)^2 = -3$ Solution:

86.
$$8(x-4)^4 - 10(x-4)^2 = -3$$

$$8(x-4)^4 - 10(x-4)^2 + 3 = 0$$
Let $u = (x-4)^2$; then $u^2 = (x-4)^4$.
$$8u^2 - 10u + 3 = 0 \Rightarrow (2u-1)(4u-3) = 0$$

$$u = \frac{1}{2} \text{ or } u = \frac{3}{4}$$

$$(x-4)^2 = \frac{1}{2} \Rightarrow x - 4 = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2} \text{ or }$$

$$x = 4 \pm \frac{\sqrt{2}}{2} = \frac{8}{2} \pm \frac{\sqrt{2}}{2} = \frac{8 \pm \sqrt{2}}{2}$$

$$(x-4)^2 = \frac{3}{4} \Rightarrow x - 4 = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$$

$$(x-4)^2 = \frac{3}{4} \Rightarrow x - 4 = \pm \sqrt{\frac{3}{4}} = \pm \frac{\sqrt{3}}{2}$$

$$x = 4 \pm \frac{\sqrt{3}}{2} = \frac{8}{2} \pm \frac{\sqrt{3}}{2} = \frac{8 \pm \sqrt{3}}{2}$$
Solution set:
$$\left\{\frac{8 \pm \sqrt{2}}{2}, \frac{8 \pm \sqrt{3}}{2}\right\}$$

Q7. (4 points) (1.7 Recitation Q#5): Solve the following nonlinear inequality and express

the solution using interval notation. $\frac{x}{2} \ge \frac{5}{x+1} + 4$

Solution:
$$\frac{x}{2} - \frac{5}{x+1} - 4 \ge 0$$

$$x - \frac{10}{x+1} - 8 \ge 0$$

$$\frac{x^2 + x - 10 - 8x - 8}{x + 1} \ge 0$$

$$\frac{x^2 - 7x - 18}{x + 1} \ge 0$$

$$\frac{(x-9)(x+2)}{x+1} \ge 0$$

$$CRV: -2, -1, 9$$

$$\frac{(x-9)(x+2)}{(x+1)} \ge 0 \qquad \underbrace{\qquad \qquad ----- \quad 0 \quad +++++0 \quad -----0 + +++}_{x}$$

$$x \qquad -\infty \qquad -2 \qquad -1 \qquad 9 \qquad \infty$$

Answer: $SS = [-2, -1) \cup [9, \infty)$

Q8. (4 points) (1.8 Textbook Exercise 76): Solve
$$\left| \frac{x^2 + 2}{x} \right| - \frac{11}{3} = 0$$

Solution:

Math 001 Test II, (Textbook: 1,1 to 2.5) Instructor: Sayed Omar, Term 161 Page 4 of 6

$$\frac{x^2 + 2}{x} = -\frac{11}{3}$$

$$3x \left(\frac{x^2 + 2}{x}\right) = 3x \left(-\frac{11}{3}\right)$$

$$3\left(x^2 + 2\right) = -11x \Rightarrow 3x^2 + 6 = -11x \Rightarrow$$

$$3x^2 + 11x + 6 = 0 \Rightarrow (3x + 2)(x + 3) = 0$$

$$3x + 2 = 0 \Rightarrow x = -\frac{2}{3} \text{ or } x + 3 = 0 \Rightarrow x = -3$$
Solution set: $\left\{-3, -\frac{2}{3}, \frac{2}{3}, 3\right\}$

Q9. (6 points) (2.1 Recitation Q#3): Plot the following equations and find the domain and range:

(a):
$$x = \sqrt{y-1}$$

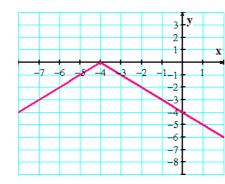
(b):
$$y = -|x + 4|$$

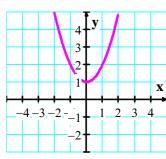
(c):
$$y = x^2 + 1$$

Solution (i):

(a):

(c):





 $D = [0, \infty)$ $R = [1, \infty)$

$$D = (-\infty, \infty)$$
 $R = (-\infty, 0]$

 $D = (-\infty, \infty)$ $R = [1, \infty)$

Q10. (4 points) (2.2 Textbook Exercise 23): Sketch the graph of the circle $4x^2 + 4y^2 + 4x - 16y - 19 = 0$. **Solution:** Dividing the equation by 4:

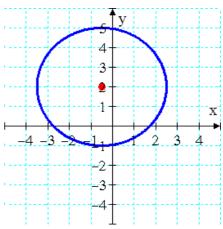
$$x^2 + y^2 + x - 4y - \frac{19}{4} = 0$$

$$x^{2} + x + \left(\frac{1}{2}\right)^{2} + y^{2} - 4y + 2^{2} = \frac{19}{4} + \frac{1}{4} + 4$$

$$\left(x + \frac{1}{2}\right)^2 + \left(y - 2\right)^2 = \frac{20}{4} + 4$$

$$\left(x + \frac{1}{2}\right)^2 + \left(y - 2\right)^2 = 9$$

The center of the circle is $\left(-\frac{1}{2}, 2\right)$ and the radius is 3.



cannot be negative. Thus,

11. (4 points) (2.3 Textbook Exercise): Decide whether each relation defines a function and give the domain and range.

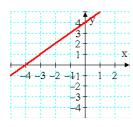
(a):
$$y = x + 4$$

(b):
$$y = \sqrt{2x - 1}$$

(c):
$$y^2 = x$$

(d):
$$y \le x - 1$$

(b):
$$y = \sqrt{2x - 1}$$
 (c): $y^2 = x$ **(d):** $y \le x - 1$ **(e):** $y = \frac{5}{x - 1}$



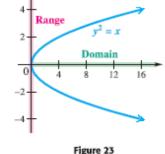
- Solution
- (a) In the defining equation (or rule), y = x + 4, y is always found by adding 4 to x. Thus, each value of x corresponds to just one value of y and the relation defines a function; x can be any real number, so the domain is $\{x \mid x \text{ is a real }$ number or $(-\infty, \infty)$. Since y is always 4 more than x, y also may be any real number, and so the range is $(-\infty, \infty)$.
- Range Domain

Figure 22

 $2x - 1 \ge 0$ Solve the inequality. (Section 1.7) $2x \ge 1$ Add 1. $x \ge \frac{1}{2}$, Divide by 2.

and the domain of the function is $\left[\frac{1}{2},\infty\right)$. Because the radical is a nonnegative number, as x takes values greater than or equal to $\frac{1}{2}$, the range is $y \ge 0$, that is, $[0, \infty)$. See Figure 22.

(b) For any choice of x in the domain of $y = \sqrt{2x - 1}$, there is exactly one corresponding value for y (the radical is a nonnegative number), so this equation defines a function. Refer to the agreement on domain stated previously. Since the equation involves a square root, the quantity under the radical sign



(c) The ordered pairs (16,4) and (16,-4) both satisfy the equation $y^2 = x$. Since one value of x, 16, corresponds to two values of y, 4 and -4, this equation does not define a function. Because x is equal to the square of y, the values of x must always be nonnegative. The domain of the relation is [0,∞). Any real number can be squared, so the range of the relation is (-∞, ∞). See Figure 23.

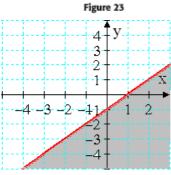


Figure 24

(d) By definition, y is a function of x if every value of x leads to exactly one value of y. Substituting a particular value of x, say 1, into $y \le x - 1$, corresponds to many values of y. The ordered pairs (1,0), (1,-1), (1,-2), (1, −3), and so on, all satisfy the inequality. For this reason, an inequality rarely defines a function. Any number can be used for x or for y, so the domain and the range of this relation are both the set of real numbers, $(-\infty, \infty)$.

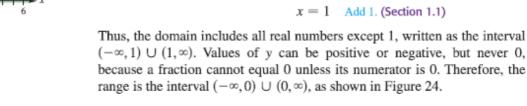
(e) Given any value of x in the domain of

$$y = \frac{5}{x - 1},$$

we find y by subtracting 1, then dividing the result into 5. This process produces exactly one value of y for each value in the domain, so this equation defines a function. The domain includes all real numbers except those that make the denominator 0. We find these numbers by setting the denominator equal to 0 and solving for x.

$$x - 1 = 0$$

 $x = 1$ Add 1. (Section 1.1)



Q12. (4 points): Find the value of k so that the line through the points (4,-1) and (k,2) is perpendicular to the line 2y-5x=1.

Solution:

$$m_{1} = \frac{2 - (-1)}{k - 4} = \frac{3}{k - 4}$$

$$2y - 5x = 1 \Rightarrow m_{2} = \frac{5}{2}$$

$$m_{1}m_{2} = -1$$

$$\frac{3}{k - 4} \cdot \frac{5}{2} = -1$$

$$15 = (-1)2(k - 4)$$

$$15 = -2k + 8$$

$$2k = -7$$

$$\Rightarrow k = -\frac{7}{2}$$