King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 - Term 151

Recitation (9.7)

Question 1:

Let
$$A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 0 & -2 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & -1 & 2 \\ 1 & 0 & 5 \\ 3 & -3 & -5 \end{bmatrix}$, and $C = \begin{bmatrix} 3 & -6 & -3 \\ 7 & -14 & -11 \\ -1 & 1 & 1 \end{bmatrix}$. Perform each

possible operation. If an operation is not possible, so state:

a.
$$-2A$$

b.
$$A + B$$

d.
$$B^2 - 2C$$

Answer: (a):
$$-2A = \begin{bmatrix} 2 & -4 & -4 \\ -2 & 0 & 4 \end{bmatrix}$$

(b): A + B is **not** possible because the dimension of $A \ 2 \times 3 \neq \text{dimension of } B \ 3 \times 3$.

(c): $C_{3\times 3}A_{2\times 3}$ is **not** possible (It is not conformable for multiplication) because the number of column of C is not equal to the number of row of A.

(d):
$$B^2 - 2C = \begin{bmatrix} 8 & 3 & -3 \\ 4 & 12 & -1 \\ -7 & 10 & 14 \end{bmatrix}$$

Question 2: If $A = \begin{bmatrix} -1 & 2 & -3 \\ 6 & -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 & 4 \\ -2 & 6 & -3 \end{bmatrix}$, then find the matrix X for which 4X + B = X - 2A.

Answer:
$$X = \begin{bmatrix} \frac{2}{3} & -1 & \frac{2}{3} \\ -\frac{10}{3} & -\frac{4}{3} & -\frac{1}{3} \end{bmatrix}$$

Question 3: If A, B and C are $n \times n$ matrices and I_n is the identity matrix of order n, then which of the following statements is TRUE?

A)
$$(A + I_n)(A - I_n) = A^2 - I_n^2$$

(True) because
$$(A + I_n)(A - I_n) = A^2 - A + A - I_n^2 = A^2 - I_n^2$$

B)
$$(A - B)^2 = A^2 - 2AB + B^2$$
 (False)

C)
$$A^2C = ACA$$
 (False)

D)
$$(A + I_n)^2 = A^2 + I_n$$
 (False)

E)
$$(A + B)(A^2 - AB + B^2) = A^3 + B^3$$
 (False)

Question 4: If $A = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 0 & -1 \\ 1 & 1 & 4 \end{bmatrix}$, then the element in the third row and second column

of the matrix $A^3 + 3A$ is: