King Fahd University of Petroleum and Minerals

Prep-Year Math Program Math 002 - Term 151 Recitation (7.3)

Question 1:

Given $\sec \alpha = -\frac{13}{12}$, α in quadrant II, and $\sin \beta = \frac{3}{5}$, β in quadrant II, find $\sec(\alpha + \beta)$.

Answer: $\frac{65}{33}$

Question 2: Find the value of : $\sin(210^{\circ} + x) - \cos(120^{\circ} + x)$ for any angle x.

Answer: 0

Question 3: Simplify $\sin\left(\frac{3\pi}{2} + \theta\right) + \cos\left(\frac{3\pi}{2} - \theta\right)$

Answer: (a): $-\sin\theta - \cos\theta$

Question 4 Find the exact value of the following expressions:

- \overline{a}) $\cos(165^{\circ})$
- b) $\sin 13^{\circ} \sin 73^{\circ} + \sin 77^{\circ} \sin 17^{\circ}$
- $c) \frac{1-\tan 69^{\circ}\tan 66^{\circ}}{\tan 69^{\circ}+\tan 66^{\circ}}$

Answer:

- (a): $\frac{-\sqrt{6}-\sqrt{2}}{2}$
- **(b):** $\frac{1}{2}$
- **(c):** -1

<u>Question 5</u> If $\cos \alpha = -\frac{\sqrt{5}}{3}$ and $\sin \beta = -\frac{1}{3}$, where α is in quadrant II and β is in quadrant IV, then $\cos(\alpha + \beta) =$

Answer: $\frac{-2\sqrt{10}+2}{9}$