King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 - Term 151

Recitation (4.3)

Question 1 For the function $f(x) = \log_{1/3}(x-1) - 2$

- 1) find, if any, the x-intercept and the y-intercept
- 2) find the domain
- 3) find the asymptote(s)
- 4) sketch the graph of f(x)
- 5) find the inverse function $f^{-1}(x)$

(3): The vertical asymptote: x = 1**(4)**:

Question2: The expression $-\frac{2}{3}\log_{7}(5m^2) + \frac{1}{2}\log_{7}(25m^2) + \log_{7}\sqrt[4]{25}$ is equal to

Answer: A) $\log_{7} \frac{5^{5/6}}{m^{1/3}}$

Question3

The graph of $y = -\log_{\frac{1}{2}} |x-3|$ is below the x-axis on the interval(s):

- a) $(1, 3) \cup (3, 5)$ b) $(-\infty, 2) \cup (4, \infty)$ c) $(2, 3) \cup (3, 4)$ d) $(-\infty, 1) \cup (3, \infty)$ e) $(3, \infty)$

Solution: (C): $(2, 3) \cup (3, 4)$

Question4

The function $y = \log_{(a+1)}(x-2)$ is **defined** when

- a) x > 2 and a > -1
- b) $x \ge 2$ and $a \ge -1$ c) x > 0 and $a \ne 1$
- d) x > 2 and a > -1, $a \ne 0$ e) x > 0 and a > 0, $a \ne 1$

Answer: (d): x > 2, a > -1 and $a \ne 0$

Question5

The expression $\log x^3 y^4 - 3\log 4y^2z + \log 8x^2yz$ can be written as:

- (a) $\log 512x^5y^{11}z^4$
- (d) $\log 2x^5y^3$

(b) $\log \frac{8}{3}x^5y^3$

 $\log(x^3y^4 - 12y^2z + 8yz)$

(c) $\log \frac{x^5}{8x^7}$