King Fahd University of Petroleum and Minerals **Prep-Year Math Program**

Math (001)-Term (141) Recitation (1. 7)

Question 1:

The solution set, in interval notion, o the inequality $x^3 + 3x^2 - 16x \le 48$ is

- A) $(-\infty, -3] \cup [4, \infty)$
- B) $[-3,\infty)$ C) $[-4,-3] \cup [4,\infty)$ D) $(-\infty,-4]$

E) $(-\infty, -4] \cup [-3, 4]$

Answer: $SS = (-\infty, -4] \cup [-3, 4]$

Question 2: Find the solution set, in interval notation, of the following inequalities:

- (a) $-2 < \frac{2x-3}{3} \le 1$ $SS = \left(-\frac{3}{2}, 3\right)$
- (b) $\frac{(2-x)(x+3)^4}{(x-5)^3} \le 0$ $SS = (-\infty, 2] \cup (5, \infty)$
- (c) $\frac{3x+1}{2x-3} < 4$ $SS = \left(-\infty, \frac{3}{2}\right) \cup \left(\frac{13}{5}, \infty\right)$

Question 3:

Find the values of k for which the equation $2x^2 - \sqrt{3}x + 2k = \frac{1}{4}$ has no real solutions.

Answer: $k \in \left(\frac{5}{16}, \infty\right)$

Question 4:

The solution set of the inequality $\frac{1}{r^2 + 2r - 3} \le \frac{3}{r + 3}$ is

- (a)(-1,3)
- $(b)(-3,\infty) (c)(-3,1)$
- $(b)(-1,3) \cup \left[\frac{4}{3},\infty\right) \qquad (e)(-3,1) \cup \left[\frac{4}{3},\infty\right)$

Answer: $SS = (-3,1) \cup \left[\frac{4}{3}, \infty\right]$