Math 001-45, Quiz 6 (2.5 – 2.7), Term 141 , Instructor: Sayed Omar Page 1 21-Dec-14 SN _____ ID ___ NAME ____

Show all necessary steps for full marks.

Q1. (7 points): Given the line L having the equation 5x + 4y - 20 = 0, find the equation of the line perpendicular to the line L and passing through (2, -3).

Solution: 5x + 4y - 20 = 0

$$4y = -5x + 20$$

$$y = -\frac{5}{4}x + 5$$

The slope of *L* is $-\frac{5}{4}$.

The slope of the line perpendicular to L is $\frac{4}{5}$.

The equation of the line required is

$$y - (-3) = \frac{4}{5}(x - 2)$$
 $\Rightarrow y = \frac{4}{5}(x - 2) - 3 = \frac{4}{5}x - \frac{8}{5} - 3$ $\Rightarrow y = \frac{4}{5}x - \frac{23}{5}$

Q2. (8 points) (Textbook 2.6 Exercise 46): Given g(x) = [2x - 1]

- (a): Graph g(x) = [2x 1].
- (b): Find the set of all x-intercepts.
- (c): Find domain,
- (d): Find range
- (e): Find y-intercept

Solution:

$$g(x) = \begin{bmatrix} 2x - 1 \end{bmatrix}$$

To get y = 0, we need

$$0 \le 2x - 1 < 1 \Longrightarrow 1 \le 2x < 2 \Longrightarrow \frac{1}{2} \le x < 1.$$

To get y = 1, we need

$$1 \leq 2x - 1 < 2 \Longrightarrow 2 \leq 2x < 3 \Longrightarrow 1 \leq x < \frac{3}{2}.$$

Follow this pattern to graph the step function.

(a):

Math 001-45, Quiz 6 (2.5 – 2.7), Term 141, Instructor: Sayed Omar Page 2 21-Dec-14

- **(b):** $domain = (-\infty, \infty)$
- (c): $\{0,\pm 1,\pm 2,\pm 3,\cdots\}$
- (d): x-intercepts: $\frac{1}{2} \le x < 1$
- (e): y-intercepts: y = -1

Q3. (4 points) (Recitation 2.7)

If the graph of $y = \frac{2x}{x+1}$ is translated one unit to the right and three units downward, what is the new equation of the new graph?

Solution:

Shift the graph of $y = \frac{2x}{x+1}$ 1 unit to the right = Replace x with x-1:

$$y = \frac{2(x-1)}{(x-1)+1} = \frac{2x-2}{x}$$

Now, shift 3 units downward = Replace y with y + 3:

$$y + 3 = \frac{2x - 2}{x}$$

$$y = \frac{2x-2}{x} - 3 = \frac{2x-2-3x}{x} = \frac{-x-2}{x}$$

Answer:
$$y = \frac{-x-2}{x}$$

 \bigcirc 4. (6 points) (2.7 Exercise 25 - 27, page 255): Suppose the point (8,12) is on the graph of y = f(x). Find a point on the graph of each function.

25. (a):
$$y = f(x + 4)$$

25 (b):
$$y = f(x) + 4$$

26. (a):
$$y = \frac{1}{4}f(x)$$

25 (b):
$$y = f(x) + 4$$
 26 (b): $y = 4f(x)$

27. (a):
$$y = f(4x)$$

27 (b):
$$y = f\left(\frac{1}{4}x\right)$$

Solution:

- **25.** (a) y = f(x+4) is a horizontal translation of f, 4 units to the left. The point that corresponds to (8, 12) on this translated function would be (8-4,12) = (4,12).
- (b) y = f(x) + 4 is a vertical translation of f, 4 units up. The point that corresponds to (8, 12) on this translated function would be (8,12+4)=(8,16).

$$(-4,12) = (4,12)$$

$$(8,12+4) = (8,16)$$

- **26.** (a) $y = \frac{1}{4} f(x)$ is a vertical shrinking of f, by a factor of $\frac{1}{4}$. The point that corresponds to (8, 12) on this translated function would be $\left(8, \frac{1}{4} \cdot 12\right) = \left(8, 3\right)$.
- (b) y = 4f(x) is a vertical stretching of f, by a factor of 4. The point that corresponds to (8, 12) on this translated function would be $(8, 4 \cdot 12) = (8, 48)$.

$$\left(8, \frac{12}{4}\right) = (8, 3)$$

$$(8, 4 \cdot 12) = (8, 48)$$

- 27. (a) y = f(4x) is a horizontal shrinking of f, by a factor of 4. The point that corresponds to (8, 12) on this translated function is $\left(8 \cdot \frac{1}{4}, 12\right) = \left(2, 12\right)$.
- (b) $y = f(\frac{1}{4}x)$ is a horizontal stretching of f, by a factor of 4. The point that corresponds to (8, 12) on this translated function is $(8 \cdot 4, 12) = (32, 12)$.

$$\left(\frac{8}{4},12\right) = (2,12)$$

 $(8 \cdot 4, 12) = (32, 12)$