Math 002-23, Quiz 5 (7.4, 7.5, 9.1 and 9.2), Term 172, Instructor: Sayed Omar, Page 1 03-Apr-18

Serial #: _____ ID ____ NAME _____ Show all necessary steps for full marks.

Question 1: (5 points) (7.4 Textbook Exercise 42): Given $2\sin^2 x - \sin x - 1 = 0$

- (a): Solve the equation over the interval $[0,2\pi)$.
- **(b):** Find all solutions of the equation.

Solution

(a):
$$(2\sin x + 1)(\sin x - 1) = 0$$

$$2\sin x + 1 = 0$$
 or $\sin x - 1 = 0$

$$\sin x = -\frac{1}{2}$$
 or $\sin x = 1$

$$x = \frac{7\pi}{6}$$
 or $x = \frac{11\pi}{6}$ $x = \frac{\pi}{2}$ Since $0 \le \frac{\pi}{2} < \pi$, but $\frac{7\pi}{2}$ is not in the requested domain.

$$SS = \left\{ \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6} \right\}$$

(b):
$$x = \frac{\pi}{2} + 2k \pi$$
, $x = \frac{7\pi}{6} + 2k \pi$, $x = \frac{11\pi}{6} + 2k \pi$

Question 2: (5 points) Given $2\cos 2x - \sqrt{2} = 0$,

Find II solutions over the interval $[0,2\pi)$.

Solution:

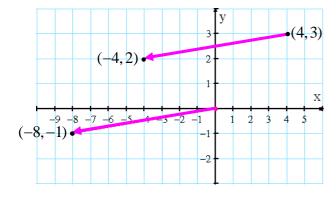
$$\cos 2x = \frac{\sqrt{2}}{2} \implies 2x = \frac{\pi}{4} + 2n\pi \quad , \qquad 2x = \frac{7\pi}{4} + 2n\pi$$

$$\implies x = \frac{\pi}{8} + n\pi \quad , \qquad x = \frac{7\pi}{8} + n\pi$$

This is a cosine function with period 4π , so the solution set is $SS = \left\{ \frac{\pi}{8} + n\pi, \frac{7\pi}{8} + n\pi \right\}$.

If
$$n = 0 \implies x = \frac{\pi}{8} \in [0, 2\pi)$$
, $x = \frac{7\pi}{8} \in [0, 2\pi)$

If
$$n = 1$$
 \Longrightarrow $x = \frac{\pi}{8} + \pi = \frac{9\pi}{8} \in [0, 2\pi)$, $x = \frac{7\pi}{8} + \pi = \frac{15\pi}{8} \in [0, 2\pi)$


So, the solution set over the interval $[0,2\pi)$ is $SS = \left\{ \frac{\pi}{8}, \frac{7\pi}{8}, \frac{9\pi}{8}, \frac{15\pi}{8} \right\}$.

Question 3: (5 points) (9.1 Textbook Exercise 22): Sketch the vector $u = \langle -8, -1 \rangle$ with initial point (4,3), and find the terminal point.

Solution: The terminal point is the point which is found by shifting the point (4,3) eight units to the left and one unit downward. $(x_2, y_2) = (-8 + 4, -1 + 3) = (-4, 2)$

OR By another Method:

$$v = (x_2 - x_1, y_2 - y_1)$$

 $(-8, -1) = (x_2 - 4, y_2 - 3)$
 $-8 = x_2 - 4$ and $-1 = y_2 - 3$
 $x_2 = -8 + 4$ and $y_2 - 1 + 3$
 $(x_2, y_2) = (-4, 2)$

Question 4: (5 points) (9.2 Textbook Exercise 11):

Given $\mathbf{u} = -5\mathbf{j}$ and $\mathbf{v} = -\mathbf{i} - \sqrt{3}\mathbf{j}$. Find the following

(a): $\mathbf{u} \cdot \mathbf{v} = ?$ (b): Find the angle between \mathbf{u} and \mathbf{v} .

Solution (a): u = <0, -5> and v = <-1, $-\sqrt{3}>$

$$\mathbf{u} \cdot \mathbf{v} = <0, -5> \cdot <-1, -\sqrt{3}> = 0(-1) + (-5)(-\sqrt{3}) = 5\sqrt{3}$$

(b): $\cos \theta = \frac{u \cdot v}{\|u\| \cdot \|v\|} = \frac{5\sqrt{3}}{5 \cdot 2} = \frac{\sqrt{3}}{2} \implies \theta = 30^{\circ}$