King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 Class Test I
Textbook Sections: 2.8 ad 4.1 to 5.3
Term 172

Time Allowed: 90 Minutes

Student's Name:			
ID #:	Section:	Serial Number:	

Provide neat and complete solutions.

Show all necessary steps for full credit and write the answer in simplest form.

No Calculators, Cameras, or Mobiles are allowed during this exam.

Question	Points	Student's Score
1	5	
2	5	
3	5	
4		
5	5 5 5 5 5	
6	5	
7	5	
8	5	
9	5 5	
10	5	
Total	50	50
		100

Q1. (5 points): If $f(x) = -x^2 + 4x$, $x \le 2$, then find

(a):
$$f^{-1}(x) = ?$$
 (b): $D_{f^{-1}} = ?$ (c): $R_{f^{-1}} = ?$

(b):
$$D_{f^{-1}} = 0$$

(c):
$$R_{f^{-1}} = ?$$

Solution:

 $f(x) = -x^2 + 4x, x \le 2$

$$y = -x^2 + 4x$$
, $x \le 2$

$$x = -y^2 + 4y$$
, $y \le 2$

$$v^2 - 4v = -x, v \le 2$$

$$y^2 - 4y + 4 = 4 - x$$
, $y \le 2$

$$(y-2)^2 = 4-x$$
, where $4-x \ge 0$, $y \le 2$

$$\sqrt{(y-2)^2} = \sqrt{4-x}, -x \ge -4, y \le 2$$

$$|y-2| = \sqrt{4-x}, \ x \le 4, \ y \le 2$$

$$-(y-2) = \sqrt{4-x}$$
, $x \le 4$, $y \le 2$

$$y - 2 = -\sqrt{4 - x}$$
, $x \le 4$, $y \le 2$

$$y = 2 - \sqrt{4 - x}$$
, $x \le 4$, $y \le 2$

Answer: (a): $f^{-1}(x) = 2 - \sqrt{4 - x}$ (b): $D_{f^{-1}} = (-\infty, 4]$ (c): $D_{f^{-1}} = (-\infty, 2]$

(b):
$$D_{f^{-1}} = (-\infty, 4]$$

Q2. (5 points): Graph and find the range of the following functions;

(a):
$$q(x) = -3^{-x} + 1$$

(b):
$$k(x) = -3^{|x|}$$

Solution:

 $Range = (-\infty, 1)$

 $Range = (-\infty, -1]$

Q3. (5 points): Given $f(x) = |-2 - e^{-x+2}|$. Find the following

- Sketch the graph of f(a)
- Find the range of f(b)
- (c) Find the y- intercept of the graph of f

Solution:

- (a): $f(x) = |-2 e^{-x+2}| = 2 + e^{-x+2}$
- **(b):** The range of f is $(2, \infty)$
- (c): The y- intercept of the graph of f is $(0,2+e^2)$

Math 002 Test I, (Chapters: 2.8 and 4.1 to 5.3), In

Q4. (5 points): If the graph of the function $f(x) = \log_5(x - 20)$ intersects the graph of the function $g(x) = \log_5\left(\frac{1}{x}\right) + 3$ at the point (a,b), then a+b=?

Solution: At the intersection point functions have same value.

$$f(x) = g(x)$$

$$\log_5(x - 20) = \log_5\left(\frac{1}{x}\right) + 3$$

$$\log_5(x-20) = \log_5 x^{-1} + 3$$

$$\log_5(x - 20) = -\log_5 x + 3$$

$$\log_5(x - 20) + \log_5 x = 3$$

$$\log_5\left[(x-20)x\right] = 3$$

$$x^2 - 20x = 5^3$$

$$x^2 - 20x - 125 = 0$$

$$(x+5)(x-25) = 0$$

$$x = 25$$
 or $x = -5$ rejected

$$f(25) = \log_5(25 - 20) = \log_5 5 = 1$$

The intersection point is (25,1) = (a,b)

$$a+b = 25+1=26$$

Q5. (5 points): Textbook Exercise 36: Solve $7^{x/2} = 5^{1-x}$

Solution:

36. (a)
$$7^{x/2} = 5^{1-x} \Leftrightarrow \log 7^{x/2} = \log 5^{1-x} \Leftrightarrow \left(\frac{x}{2}\right) \log 7 = (1-x) \log 5 \Leftrightarrow \left(\frac{x}{2}\right) \log 7 = \log 5 - x \log 5 \Leftrightarrow \left(\frac{x}{2}\right) \log 7 + x \log 5 = \log 5 \Leftrightarrow x \left(\frac{1}{2} \log 7 + \log 5\right) = \log 5 \Leftrightarrow x = \frac{\log 5}{\frac{1}{2} \log 7 + \log 5}$$

Question 6: Each tire of a car has a radius of 40 cm. If the tires are rotating at 500 revolutions per minute, find the speed of the car in kilometers per hour.

Solution:

$$r = 40 \text{ cm} = 40 \left(\frac{1}{100}\text{ m}\right) = \frac{4}{10} \text{ m} = \frac{4}{10} \left(\frac{1}{1000}\text{ km}\right)$$

$$w = 500 \frac{rev}{\text{min}} = 500 (2\pi) \frac{radian}{\text{min}} = 500 (2\pi) \frac{radina}{\frac{1}{60} \text{ hr}} = 500 (2\pi) 60 \frac{radian}{\text{hr}}$$

$$v = rw = \left(\frac{4}{10000}\text{ km}\right) 500 (2\pi) 60 \frac{radian}{\text{hr}} = \frac{4}{10} (5) (2\pi) (6) \frac{\text{km}}{\text{hr}} = 24\pi \frac{\text{km}}{\text{hr}}$$

Answer: $24\pi \frac{\text{km}}{\text{hr}}$

Q7. (5 points): Find the exact value of each labeled part with a variable in the following figure

Solution:

$$\begin{vmatrix}
\cos 30^{\circ} = \frac{x}{9} \\
\frac{\sqrt{3}}{2} = \frac{x}{9}
\end{vmatrix} \Rightarrow \begin{vmatrix}
\sin 30^{\circ} = \frac{y}{9} \\
\frac{1}{2} = \frac{y}{9}
\end{vmatrix} \Rightarrow \begin{vmatrix}
y = \frac{9}{2} \\
\sqrt{3} = \frac{2}{z}
\end{vmatrix} \Rightarrow z\sqrt{3} = \frac{9}{2} \Rightarrow z = \frac{9}{2\sqrt{3}}$$

$$\cos 60^{\circ} = \frac{z}{w}$$

$$\frac{1}{2} = \frac{3\sqrt{3}}{2} \implies w = 2 \cdot \frac{3\sqrt{3}}{2} \implies \boxed{w = 3\sqrt{3}}$$
Answer:
$$\boxed{x = \frac{9\sqrt{3}}{2} \quad \boxed{y = \frac{9}{2}} \quad \boxed{z = \frac{3\sqrt{3}}{2}} \quad \boxed{w = 3\sqrt{3}}$$

Q8. (5 points):

If from the top of a tower 200 feet high, the angles of depression of the top and bottom of a building opposite to the tower are observed to be 30° and 60°, respectively, then find the height of the building. (Show your work)

Math 002 Test I, (Chapters: 2.8 and 4.1 to 5.3), Instructor: Sayed Omar, Term 172, Page 3 of 4

Q9. (5 points): Write each of the following in terms of the same trigonometric function of a reference angle.

(a):
$$\sin \frac{16\pi}{9} = ?$$

(b):
$$\csc\left(-\frac{43\pi}{5}\right) = ?$$

Solution: (a): $\frac{3\pi}{2} < \frac{16\pi}{9} < \frac{18\pi}{9} \Rightarrow \theta = \frac{16\pi}{9} \in QIV$

$$\Rightarrow \theta' = 2\pi - \frac{16\pi}{9} = \frac{2\pi}{9}$$

$$\Rightarrow \sin \theta = -\sin \theta$$

$$\Rightarrow \sin \frac{16\pi}{9} = -\sin \frac{2\pi}{9}$$

(b):
$$\theta = -\frac{43\pi}{5}$$

$$-\frac{43\pi}{5} + 10\pi = \frac{-43\pi + 50\pi}{5} = \frac{7\pi}{5}$$
 is the smallest positive coterminal angle of $\theta = -\frac{43\pi}{5}$.

$$\sin\left(-\frac{43\pi}{5}\right) = \sin\left(\frac{7\pi}{5}\right)$$

$$\pi < \frac{7\pi}{5} < \frac{3\pi}{2} \implies \frac{7\pi}{5} \in QIII$$

$$\theta' = \frac{7\pi}{5} - \pi = \frac{2\pi}{5}$$

$$\csc\theta = -\csc\theta'$$

$$\csc\left(-\frac{43\pi}{5}\right) = -\csc\frac{2\pi}{5}$$

Q10. (5 points): If the equation of terminal side of θ in standard position is x + 2y = 0, $x \ge 0$, then $3\csc\theta + 4\sec\theta = ?$

Solution:

12) If the equation of the terminal side of θ in standard position is

x + 2y = 0 , $x \ge 0$, then $3 \csc \theta + 4 \sec \theta =$