King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 - Term 142

Recitation (4.1)

Answered by S. Omar

Question 1: Decide whether each of the following function is one-to-one. Find $f^{-1}(x)$ for those functions that are one to one.

(a):
$$f(x) = -\frac{3}{2}x + 1$$

(a):
$$f(x) = -\frac{3}{2}x + 1$$
 (b): $f(x) = \frac{2x - 1}{3x - 1}$; $x \ne 1/3$ (c): $f(x) = \sqrt{49 - x^2}$

(c):
$$f(x) = \sqrt{49 - x^2}$$

Answer:

(a):

(b):

$$f^{-1}(x) = -\frac{2}{3}x + \frac{2}{3}$$
 $f^{-1}(x) = \frac{1-x}{2-3x} = \frac{x-1}{3x-2}$

(c):

The function $f(x) = \sqrt{49 - x^2}$ is not one-to-one because f(-7) = f(7) = 0

Therefore f has no inverse.

Question 2: If f(x) = ax + 12 and $f^{-1}(-2) = 3$ then find f(2)

Answer:

Question 3: If $f(x) = 2x - x^2$; $x \ge 1$ then

- find $f^{-1}(x)$ i)
- sketch the graph of $f^{-1}(x)$ ii)

Answer: (i): $f^{-1}(x) = 1 + \sqrt{1-x}$

 $f(x) = 2x - x^2; x \ge 1$

Question 4: If $f(x) = \frac{1}{x} - 1$ then the domain D and the range R of the inverse function f^{-1} are

- (a) $D = (-\infty, 0) \cup (1, \infty)$ and $R = (-\infty, 0) \cup (0, \infty)$
- **(b)** D = (0,1) and $R = (-\infty,0) \cup (0,\infty)$
- (c) $D = (-\infty, -1) \cup (-1, \infty)$ and $R = (-\infty, 0) \cup (0, \infty)$
- (d) $D = (-\infty, 0) \cup (0, 1) \cup (1, \infty)$ and $R = (-1, 0) \cup (0, 1)$
- (e) $D = (-\infty, 1) \cup (1, \infty)$ and $R = (-\infty, 1) \cup (1, \infty)$

Answer: (c)
$$D = (-\infty, -1) \cup (-1, \infty)$$
 and $R = (-\infty, 0) \cup (0, \infty)$

Question 5: If
$$f(x) = \frac{2x}{x-1}$$
, $x \ne 1$, then $f^{-1}\left(\frac{3}{2}\right)$ is equal to

- (a) -3
- (b) 3
- (c) 2/3
- (d) -2/3
- (e) 3/2

Answer: (a): -3