King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 - Term 132

Reduction Identity

Solved by Saved Omar

$$a\sin x + b\cos x = k\sin(x + \alpha)$$

where
$$k = \sqrt{a^2 + b^2}$$
 and α is determined by: $\cos \alpha = \frac{a}{\sqrt{a^2 + b^2}}$ and $\sin \alpha = \frac{b}{\sqrt{a^2 + b^2}}$

Or $\tan \alpha = \frac{b}{a}$ where α can be determined from the quadrant that contains the point (a,b)

Question 1: Given the function $f(x) = 2\sin{\frac{x}{3}} - 2\sqrt{3}\cos{\frac{x}{3}}$

- a) Rewrite f(x) in the form $f(x) = k \sin(bx + \alpha)$
- b) Find the amplitude, the phase shift, the period, and the range for the graph of f(x).
- c) Sketch the graph of the function $f(x) = 2\sin\frac{x}{3} 2\sqrt{3}\cos\frac{x}{3}$ over two periods.

Solution:

(a):
$$f(x) = a \sin \frac{x}{3} + b \cos \frac{x}{3} = k \sin \left(\frac{x}{3} + \alpha\right)$$

$$a = 2$$
, $b = -2\sqrt{3} \implies (2, -2\sqrt{3})$ is in Quadrant IV.

$$k = \sqrt{a^2 + b^2} = \sqrt{2^2 + (-2\sqrt{3})^2} = \sqrt{4 + 12} = 4$$

$$k = \sqrt{a^2 + b^2} = \sqrt{2^2 + (-2\sqrt{3})^2} = \sqrt{4 + 12} = 4$$

$$\sin \alpha = \frac{b}{k} = \frac{-2\sqrt{3}}{4} = -\frac{\sqrt{3}}{2}$$

$$\cos \alpha = \frac{a}{k} = \frac{2}{4} = \frac{1}{2}$$

$$\Rightarrow \alpha \text{ is in Quadrant IV and } \alpha = -\frac{\pi}{3} \text{ OR } \alpha = \frac{5\pi}{3}$$

$$f(x) = 4\sin\left(\frac{x}{3} - \frac{\pi}{3}\right)$$
 OR $f(x) = 4\sin\left(\frac{x}{3} + \frac{5\pi}{3}\right)$

(b): Amplitude = 4

Phase shift =
$$-\frac{\frac{\pi}{3}}{\frac{1}{3}} = \pi$$
 OR Phase shift = $-\frac{\frac{5\pi}{3}}{\frac{1}{3}} = 5\pi$

Period =
$$\frac{2\pi}{1/3} = 6\pi$$
 Range = [-4,4]

Beginning key point = Phase shift = π OR Beginning key point = Phase shift = -5π

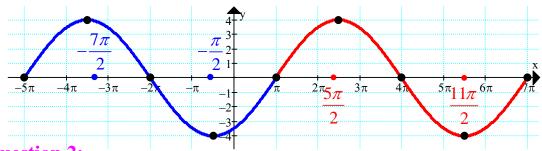
First quarter key point = phase shift
$$+\frac{1}{4}$$
 period = $\pi + \frac{1}{4}(6\pi) = \pi + \frac{3\pi}{2} = \frac{5\pi}{2}$

KFUPM, Math 002 Recit7.4 Reduction Identity, Term 132, Solved by Sayed Omar, Page 1/2 30-Mar-14

The key points are
$$\pi = \frac{2\pi}{2}$$
, $\frac{5\pi}{2}$, $\frac{8\pi}{2} = 4\pi$, $\frac{11\pi}{2}$, $\frac{14\pi}{2} = 7\pi$

The key points are
$$-5\pi$$
, $-5\pi + \frac{1}{4} Period = -5\pi + \frac{3\pi}{2} = -\frac{7\pi}{2}$, $-\frac{4\pi}{2}$, $-\frac{\pi}{2}$

(c): Graph of
$$f(x) = 4\sin\left(\frac{x}{3} + \frac{5\pi}{3}\right)$$
 is: Graph of $f(x) = 4\sin\left(\frac{x}{3} - \frac{\pi}{3}\right)$ is:



Question 2:

If $\sin 20^{\circ} - \sqrt{3}\cos 20^{\circ} = k \sin \theta$, $0^{\circ} < \theta < 90^{\circ}$. Then k and θ are equal to

A)
$$-2, 40^{\circ}$$

B)
$$2, 20^{\circ}$$

C)
$$1-\sqrt{3}$$
, 20°

D)
$$-2,20^{\circ}$$

E)
$$-2,30^{\circ}$$

Solution:
$$\sin 20^{\circ} - \sqrt{3}\cos 20^{\circ} = \sqrt{a^2 + b^2}\sin(20^{\circ} + \alpha) = k\sin\theta, \ 0^{\circ} < \theta < 90^{\circ}$$

$$\sqrt{a^2 + b^2} = \sqrt{1^2 + (-\sqrt{3})^2} = 2$$

$$\begin{vmatrix}
\sin \alpha = \frac{b}{k} = \frac{-\sqrt{3}}{2} \\
\cos \alpha = \frac{a}{k} = \frac{1}{2}
\end{vmatrix} \Rightarrow \alpha \in \text{IV}$$

$$\alpha = -60^{\circ} \text{ OR } \alpha = 300^{\circ}$$

$$\alpha = -60^{\circ}$$
: $\sin 20^{\circ} - \sqrt{3}\cos 20^{\circ} = k \sin(20^{\circ} + \alpha)$

$$= 2\sin\left(20^{\circ} - 60^{\circ}\right)$$
$$= 2\sin\left(-40^{\circ}\right)$$

$$=-2\sin 40^{\circ} = k \sin \theta \implies \boxed{k = -2}, \boxed{\theta = 40^{\circ}}$$

OR
$$\alpha = 300^{\circ} : \sin 20^{\circ} - \sqrt{3} \cos 20^{\circ} = k \sin(20^{\circ} + \alpha)$$

$$= 2\sin\left(20^{\circ} + 300^{\circ}\right)$$
$$= 2\sin\left(320^{\circ}\right)$$

$$= -2\sin(-320^\circ)$$

$$=-2\sin(-320^{\circ} + 360^{\circ})$$

$$=-2\sin(40^{\circ})$$