King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 - Term 132

Recitation (5.2)

Ouestion1: $sec(\theta - 67^{\circ}10') =$

A)
$$\csc(157^{\circ}10' - \theta)$$

B)
$$\frac{1}{\cos(\theta + 67^{\circ}10')}$$
 C) $\frac{1}{\cos(\theta + 23^{\circ}50')}$

C)
$$\frac{1}{\cos(\theta + 23^{\circ}50')}$$

D)
$$\frac{1}{\cos(\theta + 23^{\circ}50')}$$
 E) $\csc(\theta - 22^{\circ}50')$

E)
$$\csc(\theta - 22^{\circ} 50')$$

Question 2: If the terminal side of an angle θ in standard position, is defined by 6x + 8y = 0, y < 0 then $10\cos\theta - 12\tan\theta =$

C)
$$-1$$

Answer: A) 17

Question 3: Which of the following statement is possible?

(a):
$$\tan \theta = \frac{22}{7}$$

(b):
$$\cos \theta = \frac{4}{3}$$

(c):
$$\sin \theta = \frac{3}{2}$$

(d):
$$\csc\theta = \frac{1}{2}$$

(e):
$$\sec \theta = 0$$

Question 4: If $\tan \theta = 4$ and P(-3, y) is a point on the terminal side of θ in standard position, then $\sec \theta =$

(A):
$$\sqrt{17}$$

(B):
$$-\frac{5}{3}$$

(C):
$$-\sqrt{17}$$

(D):
$$-\frac{1}{4}$$

(E):
$$-\frac{\sqrt{17}}{4}$$

Answer: (C): $-\sqrt{17}$

Question 5: If $\tan \theta = 2\sqrt{3}$ and θ is in quadrant III. Find $4\cos \theta + \sin^2 \theta$.

Answer: $\frac{-4\sqrt{13}+12}{13}$