KFUPM, Math 002 Recitation 10.2, Term 132, Answered by Sayed Omar, Page 1/2 11-May-14 King Fahd University of Petroleum and Minerals Prep-Year Math Program Math 002 - Term 132 Recitation (10.2 and 10.3)

<u>Question 1:</u> Find the center, vertices, foci, and eccentricity of the ellipse given by the equation: $4(x - 1)^2 + 16y^2 = 4$

Answer:

center = (1,0)

Foci =
$$(h \pm c, k) = \left(1 \pm \frac{\sqrt{3}}{2}, 0\right) = \left(\frac{2 \pm \sqrt{3}}{2}, 0\right)$$

vertices = $(h \pm a, k) = (1 \pm 1, 0) = (0, 0)$, (2, 0)
 $e = eccentricity = \frac{c}{a} = \frac{\sqrt{3}}{2}$

Question 2

a) Find the equation in the standard form of the ellipse that has vertices at (5, 6) and (5,-4) and foci at (5,4) and (5, -2).

b) Find the equation in the standard form of the ellipse with foci at (-1,2) and (3,2) that passes through the point (3,5).

Answer:

(a):
$$\frac{\left(x-5\right)^2}{16} + \frac{\left(y-1\right)^2}{25} = 1$$

(b):
$$\frac{\left(x-1\right)^2}{16} + \frac{\left(y-2\right)^2}{12} = 1$$

Question3 Find the center, vertices, foci, eccentricity, and asymptotes of the hyperbola given by the equation $x^2 - x - y^2 - 2y = 0$.

Answer:
$$Vertices = \left(\frac{1}{2}, -1 \pm \frac{\sqrt{3}}{2}\right)$$
 $Foci = \left(\frac{1}{2}, -1 \pm \frac{\sqrt{6}}{2}\right)$ $center = \left(\frac{1}{2}, -1\right)$

eccentricity = $\sqrt{2}$

Asymptotes are
$$y = x - \frac{3}{2}$$
, $y = -x - \frac{1}{2}$

KFUPM, Math 002 Recitation 10.2, Term 132, Answered by Sayed Omar, Page 2/2 11-May-14 Question 4

a) Find the equation in the standard form of the hyperbola with vertices

(2, 3) and (-2, 3) , and eccentricity $\frac{5}{2}$.

b) Find the equation in the standard form of the hyperbola with foci (0,5) and (0, -5), and asymptotes $y = \pm 2x$.

Answer:

(a):	$\frac{x^2}{4} - \frac{(y-3)^2}{21}$	-=1
(b):	$\frac{y^2}{20} - \frac{x^2}{5} = 1$	

Question5

The equation of one of the asymptotes of the hyperbola $4(x-1)^2 - (y+1)^2 - 16 = 0$

<i>A</i>) $y = 2x + 7$	B) y = 2x - 3	C) $y = 2x - 8$
D) y = x - 4	E) y = 2x + 6	
Answer: $y = 2x - 3$	or $y = -2x + 1$	