Math 001-04, Quiz 6
 (2.8 and 3.1), Term 131
 Instructor: Sayed Omar Page 1
 21-Dec-13

 SN ______
 ID ______NAME _____

Show all necessary steps for full marks.

Q1. (5 points) (2.8 Exercise 40): Given
$$f(x) = \frac{1}{x}$$
. Find $\frac{f(x+h)-f(x)}{h} = ?$

Solution:

$$\frac{f(x+h)-f(x)}{h} = \frac{\frac{1}{x+h} - \frac{1}{x}}{h} = \frac{\frac{x-(x+h)}{x(x+h)}}{h} = \frac{\frac{-h}{x(x+h)}}{\frac{h}{1}} = \frac{-h}{x(x+h)} \cdot \frac{1}{h} = -\frac{1}{x(x+h)}$$

Q2. (5 points) If $f(x) = \frac{x-1}{3-x}$ and $g(x) = \sqrt{x+2}$, find domain of $f \circ g$.

Solution:
$$(f \circ g)(x) = f[g(x)] = f[\sqrt{x+2}] = \frac{\sqrt{x+2}-1}{3-\sqrt{x+2}}$$

Let *D* be the domain of the above expression.

Then
$$D = \{x \mid x + 2 \ge 0 \text{ and } 3 + \sqrt{x + 2} \ne 0\} = [-2, 7) \bigcup (7, \infty)$$

$$D_{f \circ g} = D_g \cap D = [-2, \infty) \cap ([-2, 7) \cup (7, \infty)) = [-2, 7) \cup (7, \infty)$$

Q3. (5 points) (3.1 Textbook Example 3): Graph $f(x) = -3x^2 - 2x + 1$ by completing the square and locating the vertex. Identify the intercepts of the graph.

SOLUTION To complete the square, the coefficient of x^2 must be 1.

$$f(x) = -3\left(x^2 + \frac{2}{3}x\right) + 1$$
Factor -3 from the first two terms.
$$f(x) = -3\left(x^2 + \frac{2}{3}x + \frac{1}{9} - \frac{1}{9}\right) + 1$$

$$f(x) = -3\left(x^2 + \frac{2}{3}x + \frac{1}{9}\right) - 3\left(-\frac{1}{9}\right) + 1$$
Distributive property (Section R.2)
$$f(x) = -3\left(x + \frac{1}{3}\right)^2 + \frac{4}{3}$$
Factor and simplify.

The vertex is $\left(-\frac{1}{3}, \frac{4}{3}\right)$. The intercepts are good additional points to find. The y-intercept is found by evaluating f(0).

The x-intercepts are found by setting f(x) equal to 0 and solving for x.

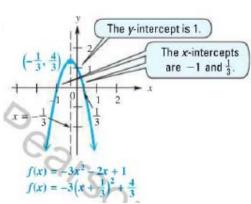
$$0 = -3x^2 - 2x + 1$$
 Set $f(x) = 0$.

$$0 = 3x^2 + 2x - 1$$
 Multiply by -1 .

$$0 = (3x - 1)(x + 1)$$
 Factor.

$$x = \frac{1}{3}$$
 or $x = -1$ Zero-factor property (Section 1.4)

Therefore, the x-intercepts are $\frac{1}{3}$ and -1.



Math 001-04, Quiz 6 (2.8 and 3.1), Term 131 Instructor: Sayed Omar Page 2 21-Dec-13

Q4. (5 points) Find the quadratic function of x whose graph has a minimum at (2,1) and passes through (0,4)

Solution: Vertex v = (h, k) = (2,1)

$$f(x) = a(x - h)^2 + k$$

$$y = a(x-2)^2 + 1$$
 \Rightarrow $4 = a(0-2)^2 + 1 \Rightarrow $3 = 4a \Rightarrow a = \frac{3}{4}$$

$$f(x) = \frac{3}{4}(x-2)^2 + 1 = \frac{3}{4}(x^2 - 4x + 4) + 1 = 3x^2 - 3x + 4$$

Another Method:

Let
$$f(x) = ax^2 + bx + c$$
. We know

$$f(2) = a(2)^2 + b(2) + c = 1$$
 (1)

$$f(0) = a(0)^2 + b(0) + c = 4$$

This implies c = 4 and from Equation (1) we have

$$4a + 2b + 4 = 1$$
 or $4a + 2b = -2$ (2)

The x-value of the vertex is 2, and by the vertex formula we

have
$$2 = \frac{-b}{2a}$$
, which implies $b = -4a$.

Substituting -4a for b in Equation (2) gives us

$$4a + 2(-4a) = -3$$

$$4a - 8a = -3$$

$$-4a = -3$$

$$a = \frac{3}{4}$$

Substituting $\frac{3}{4}$ for a in Equation (2) gives us

$$4\left(\frac{3}{4}\right) + 2b = -3$$

$$3 + 2b = -3$$

$$2b = -6$$

$$b = -3$$

Thus the desired quadratic function is

$$f(x) = \frac{3}{4}x^2 - 3x + 4.$$