Question 1: (6 points): If the length of a rectangle is 6 cm more than the width and the perimeter of the rectangle is 60 cm. then find the length and the width of the rectangle.

Solution:

P = 2(w + 6) + 2w P = 2w + 12 + 2w 60 = 4w + 12 15 = w + 3 w = 12 cmL = w + 6 = 18 cm

Question 2: (6 points): Solve (3x + 2)(x - 1) = 3x

Solution:
$$3x^2 - x - 2 = 3x$$

 $3x^2 - 4x - 2 = 0$
Let $a = 3, b = -4$, and $c = -2$.
 $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
 $= \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-2)}}{2(3)}$

$$= \frac{4 \pm \sqrt{16 + 24}}{6} = \frac{4 \pm \sqrt{40}}{6}$$
 $= \frac{4 \pm 2\sqrt{10}}{6} = \frac{2 \pm \sqrt{10}}{3}$
Solution set: $\left\{\frac{2 \pm \sqrt{10}}{3}\right\}$

Question 3: (6 points): If the equation (3x - 4)(x + 1) = -2 is written in the form $(x + m)^2 = n$, then find m + n = ?

Solution:

$$3x^{2} + 3x - 4x - 4 = -2$$

$$3x^{2} - x = 2$$

$$x^{2} - \frac{1}{3}x = \frac{2}{3}$$

$$x^{2} - \frac{1}{3}x + \left(\frac{1}{2} \cdot \frac{1}{3}\right)^{2} = \frac{2}{3} + \left(\frac{1}{6}\right)^{2}$$

$$x^{2} - \frac{1}{3}x + \left(\frac{1}{6}\right)^{2} = \frac{2}{3} + \frac{1}{36}$$

$$\left(x + \frac{-1}{6}\right)^{2} = \frac{2(12)}{3(12)} + \frac{1}{36}$$

$$\left(x + \frac{-1}{6}\right)^{2} = \frac{25}{36} \text{ is in the form } (x + m)^{2} = n \text{ where } m = \frac{-1}{6} \text{ and } n = \frac{25}{36}.$$

$$m + n = -\frac{1}{6} + \frac{25}{36} = \frac{-6 + 25}{36} = \frac{19}{36}$$

Question 4: (7 points): (1.6 Exercise 52): Solve $\sqrt{2x-5} = 2 + \sqrt{x-2}$ Solution:

Check
$$x = 3$$
.
 $\sqrt{2x-5} = 2 + \sqrt{x-2}$
 $(\sqrt{2x-5})^2 = (2 + \sqrt{x-2})^2$
 $(x-5)^2 = (2 + \sqrt{x-2})^2$
 $2x-5 = 4 + 4\sqrt{x-2} + (x-2)$
 $2x-5 = x + 2 + 4\sqrt{x-2}$
 $x-7 = 4\sqrt{x-2}$
 $(x-7)^2 = (4\sqrt{x-2})^2$
 $x^2 - 14x + 49 = 16(x-2)$
 $x^2 - 30x + 81 = 0 \Rightarrow (x-3)(x-27) = 0$: This is a true statement. 27 is a solution.
 $x = 3 \text{ or } x = 27$
Check $x = 3$.
 $\sqrt{2x-5} = 2 + \sqrt{x-2}$
 $\sqrt{2(3)-5} \stackrel{?}{=} 2 + \sqrt{3-2}$
 $\sqrt{2(3)-5} \stackrel{?}{=} 2 + \sqrt{3-2}$
 $\sqrt{6-5} = 2 + \sqrt{1}$
 $\sqrt{1} = 2 + 1 \Rightarrow 1 = 3$
This is a false statement. 3 is not a solution.
Check $x = 27$.
 $\sqrt{2(27)-5} \stackrel{?}{=} 2 + \sqrt{27-2}$
 $\sqrt{2(27)-5} \stackrel{?}{=} 2 + \sqrt{27-2}$
 $\sqrt{49} = 2 + 5 \Rightarrow 7 = 7$
Solution set: {27}