Q1. (4 points)(6.3Additional Exercise # 14):

If $f(x) = a \sin bx$, b > 0, is a sine function with period 4 and f(1) = 2, then find $f\left(\frac{2}{3}\right) = ?$

Solution:

$$Period = \frac{2\pi}{b}$$

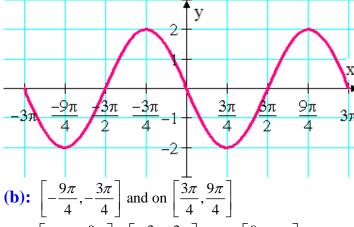
$$4 = \frac{2\pi}{b} \implies 4b = 2\pi \implies b = \frac{\pi}{2}$$

 $f(x) = a \sin bx$

$$f(x) = a \sin\left(\frac{\pi}{2}x\right) \implies f(1) = a \sin\left(\frac{\pi}{2}\right) \implies 2 = a(1) \implies \boxed{a=2}$$

$$f(x) = 2\sin\left(\frac{\pi}{2}x\right)$$

$$f\left(\frac{2}{3}\right) = 2\sin\left(\frac{\pi}{2} \cdot \frac{2}{3}\right) = 2\sin\left(\frac{\pi}{3}\right) = 2\left(\frac{\sqrt{3}}{2}\right) = \sqrt{3}$$


Q2. (6 points) (6.3 Additional Exercise 5) (a): Graph $f(x) = 2\sin\left(-\frac{2}{3}x\right)$ where $x \in [-3\pi, 3\pi]$

- (b): Determine the intervals where the function is increasing.
- (c): Determine the intervals where the function is decreasing.

Solution:

$$p = \frac{2\pi}{\left| -\frac{2}{3} \right|} = 3\pi$$

(a):

(c):
$$\left[-3\pi, -\frac{9\pi}{4}\right], \left[-\frac{3\pi}{4}, \frac{3\pi}{4}\right]$$
 and on $\left[\frac{9\pi}{4}, 3\pi\right]$

Q3. (2 points) If the rang of the function $f(x) = d + a\sin(bx + c)$ is $\left[\frac{2}{3}, 5\right]$, find the amplitude.

Solution:

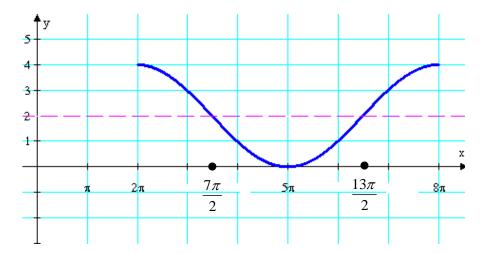
Amplitude =
$$\frac{Max - \min}{2} = \frac{5 - \frac{2}{3}}{2} = \frac{3\left(5 - \frac{2}{3}\right)}{3(2)} = \frac{15 - 2}{6} = \frac{13}{6}$$

Another Method:

Range =
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
, $5 \end{bmatrix} \Rightarrow d - |a| = \frac{2}{3}$ and $d + |a| = 5 \Rightarrow d = |a| + \frac{2}{3}$ and $d = -|a| + 5$

$$\Rightarrow |a| + \frac{2}{3} = -|a| + 5 \Rightarrow 2|a| = 5 - \frac{2}{3} \Rightarrow 2|a| = \frac{15 - 2}{3} \Rightarrow |a| = \frac{13}{6} \Rightarrow \text{Amplitutde} = \frac{13}{6}$$

Q4. (8 points):


(a): Sketch the graph of
$$y = 2\cos\left(\frac{1}{3}x - \frac{2\pi}{3}\right) + 2$$
, $x \in [2\pi, 8\pi]$

(b): Determine the interval where the function is increasing.

(c): Determine the interval where the function is decreasing.

Solution:

(a):
$$0 \le \frac{1}{3}x - \frac{2\pi}{3} \le 2\pi$$
$$0 \le x - 2\pi \le 6\pi$$
$$2\pi \le x \le 8\pi$$

(b): The function is increasing on $[5\pi, 8\pi]$

(c): The function is decreasing on $[2\pi, 5\pi]$