Show all necessary steps for full marks.

Question 1: (7 points): If $f(x) = 2x - x^2$; $x \le 1$ then

- i) find $f^{-1}(x)$
- ii) sketch the graph of $f^{-1}(x)$

Solution (i):

$$y = 2x - x^2$$
; $x \le 1$

$$x = -y^2 + 2y$$
; $y \le 1$

$$-x = y^2 - 2y$$
; $y \le 1$

$$1-x = y^2 - 2y + 1$$
; $y \le 1$

$$1 - x = (y - 1)^2 ; y \le 1 \implies 1 - x \ge 0$$

$$|y-1| = \sqrt{1-x} =$$
; $y \le 1$; $x \le 1$

$$-(y-1) = \sqrt{1-x} = ; y \le 1 ; x \le 1$$

$$y - 1 = -\sqrt{1 - x} =$$
; $y \le 1$; $x \le 1$

$$f^{-1}(x) = 1 - \sqrt{1-x}$$
; $R_{f^{-1}} = (-\infty, 1]$; $D_{f^{-1}} = (-\infty, 1]$

(ii):

Question 2: (4 points): If $f(x) = \frac{2x}{x-1}$, $x \ne 1$, then $f^{-1}\left(\frac{3}{2}\right)$ is equal to

- (a) -3
- (b) 3
- (c) 2/3
- (d) -2/3
- (e) 3/2

Solution: Let $x = f^{-1}\left(\frac{3}{2}\right)$. $\Rightarrow f(x) = \frac{3}{2} \Rightarrow \frac{3}{2} = \frac{2x}{x-1} \Rightarrow 3x - 3 = 4x \Rightarrow x = -3$

$$f^{-1}\left(\frac{3}{2}\right) = -3$$

Math 002-29, Quiz 1 (4.1 and 4.2), Term 132, Instructor: Sayed Omar Page 2 14-Feb-14 Question 3: (4 points): If $f(t) = 2^{1-3t}$ is written in the form $f(t) = k a^t$, then find the values of a and k.

Solution:
$$f(t) = 2^{1-3t} = 2^1 \cdot 2^{-3t} = 2\left(2^{-3}\right)^t = 2\left(\frac{1}{8}\right)^t \implies \boxed{k=2} \text{ and } \boxed{a = \frac{1}{8}}$$

Question 4: (4.2Example 3) (6 points):

Graph each function. Give the **domain** and **range**.

(a):
$$f(x) = -2^x$$
 (b): $f(x) = 2^{x+3}$ (c):: $f(x) = 2^{x-2} - 1$

SOLUTION In each graph, we show in particular how the point (0, 1) on the graph of $y = 2^x$ has been translated.

- (a) The graph of $f(x) = -2^x$ is that of $f(x) = 2^x$ reflected across the x-axis. The domain is $(-\infty, \infty)$, and the range is $(-\infty, 0)$. See **Figure 18.**
- **(b)** The graph of $f(x) = 2^{x+3}$ is the graph of $f(x) = 2^x$ translated 3 units to the left, as shown in **Figure 19.** The domain is $(-\infty, \infty)$, and the range is $(0, \infty)$.
- (c) The graph of $f(x) = 2^{x-2} 1$ is that of $f(x) = 2^x$ translated 2 units to the right and 1 unit down. See **Figure 20.** The domain is $(-\infty, \infty)$, and the range is $(-1, \infty)$.

Figure 18

Figure 19

Figure 20

Question 5: (4 points): Sketch the graph of (a): $f(x) = |-e^x|$ (b): $g(x) = e^{|x|}$ Solution:

(a):
$$f(x) = |-e^x| = |e^x| = e^x$$
 because $e^x > 0$ for all $x \in (-\infty, \infty)$ (b): $g(x) = e^{|x|} = \begin{cases} e^x & \text{if } x \ge 0 \\ e^{-x} & \text{if } x < 0 \end{cases}$

Math 002-29, Quiz 1 (4.1 and 4.2), Term 132, Instructor: Sayed Omar