King Fahd University of Petroleum and Minerals

Prep-Year Math Program

Math 002 Class Test I
Textbook Sections: 4.1 to 6.2
Term 132

Time Allowed: 90 Minutes

Time: 6:00 pm – 7:30 pm

Student's Name:			
ID #:	Section:	Serial Number:	

Provide neat and complete solutions.

Show all necessary steps for full credit and write the answer in simplest form.

No Calculators, Cameras, or Mobiles are allowed during this exam.

Question	Points	Student's Score
1	4	
2	4	
3	4	
4	4	
5	4	
6	4	
7	6	
8	4	
9	4	
10	4	
11	4	
12	4	
Total	50	50
		100

Q1. (4 points): (4.1Textbook Exercise 74): Find the inverse of $f(x) = \frac{-3x + 12}{x - 6}$, $x \ne 6$

Solution:

Step 1: Replace f(x) with y and interchange x and y.

$$y = \frac{-3x + 12}{x - 6} \Rightarrow x = \frac{-3y + 12}{y - 6}$$

Step 2: Solve for y.

$$x = \frac{-3y+12}{y-6} \Rightarrow x(y-6) = -3y+12 \Rightarrow$$

$$xy - 6x = -3y+12 \Rightarrow xy + 3y = 6x+12 \Rightarrow$$

$$y(x+3) = 6x+12 \Rightarrow y = \frac{6x+12}{x+3}$$

Step 3: Replace y with $f^{-1}(x)$.

$$f^{-1}(x) = \frac{6x+12}{x+3}, x \neq -3.$$

Q2. (4 points): (4.2 Textbook Example 6): Solve $x^{4/3} = 81$.

Solution:

EXAMPLE 6 Solving an Equation with a Fractional Exponent

Solve $x^{4/3} = 81$.

SOLUTION Notice that the variable is in the base rather than in the exponent.

$$x^{4/3} = 81$$

 $(\sqrt[3]{x})^4 = 81$ Radical notation for $a^{m/n}$ (Section R.7)
 $\sqrt[3]{x} = \pm 3$ Take fourth roots on each side.
Remember to use \pm . (Section 1.6)
 $x = \pm 27$ Cube each side.

Check *both* solutions in the original equation. Both check, so the solution set is $\{\pm 27\}$.

Alternative Method There may be more than one way to solve an exponential equation, as shown here.

$$x^{4/3} = 81$$
 $(x^{4/3})^3 = 81^3$ Cube each side.

 $x^4 = (3^4)^3$ Write 81 as 3^4 .

 $x^4 = 3^{12}$ $(a^m)^n = a^{mn}$
 $x = \pm \sqrt[4]{3^{12}}$ Take fourth roots on each side.

 $x = \pm 3^3$ Simplify the radical.

 $x = \pm 27$ Apply the exponent.

The same solution set, $\{\pm 27\}$, results.

Q3. (4 points): (4.3 Textbook Exercise 44): Graph $f(x) = \left| \log_{\frac{1}{2}}(x-2) \right|$.

Q4. (4 points): (4.4 Recitation Question 2): If $\log x = a$, $\log y = b$ then write the expression $\log_x x^3 \sqrt{10y}$ in terms of a and b

. **Solution:** Note that we must have: x > 0 and $x \ne 1$

$$\log_x x^3 \sqrt{10y} = \frac{\log x^3 \sqrt{10y}}{\log x} = \frac{\log x^3 + \log \sqrt{10y}}{a} = \frac{3a + \log(10y)^{1/2}}{a}$$
$$= \frac{3a + \frac{1}{2}\log(10y)}{a} = \frac{6a + \log(10y)}{2a} = \frac{6a + \log(10y)}{2a} = \frac{6a + \log(10y)}{2a}$$
$$= \frac{6a + 1 + b}{2a}$$

Answer: $\frac{6a+1+b}{2a}$

Q5. (4 points): (4.5 Textbook Example 2): Solve $3^{2x-1} = 0.4^{x+2}$

SOLUTION $3^{2x-1} = 0.4^{x+2}$

$$\ln 3^{2x-1} = \ln 0.4^{x+2}$$

Take the natural logarithm on each side.

$$(2x-1) \ln 3 = (x+2) \ln 0.4$$

Power property

$$2x \ln 3 - \ln 3 = x \ln 0.4 + 2 \ln 0.4$$

Distributive property (Section R.2)

$$2x \ln 3 - x \ln 0.4 = 2 \ln 0.4 + \ln 3$$

Write the terms with x on one side,

$$x(2 \ln 3 - \ln 0.4) = 2 \ln 0.4 + \ln 3$$

Factor out x. (Section R.4)

$$x = \frac{2 \ln 0.4 + \ln 3}{2 \ln 3 - \ln 0.4}$$

Divide by $2 \ln 3 - \ln 0.4$.

$$x = \frac{\ln 0.4^2 + \ln 3}{\ln 3^2 - \ln 0.4}$$

Power property

$$x = \frac{\ln 0.16 + \ln 3}{\ln 9 - \ln 0.4}$$
This is exact.
$$x = \frac{\ln 0.48}{\ln 22.5}$$

Apply the exponents.

Product and quotient properties (Section 4.3)

Q6. (4 points): (5.1 Textbook Example 4b): Convert 34.817° to degrees, minutes, and second.

Solution:

$$34.817^{\circ} = 34^{\circ} + 0.817^{\circ}$$
 Write as a sum.
 $= 34^{\circ} + 0.817(60')$ $1^{\circ} = 60'$
 $= 34^{\circ} + 49.02'$ Multiply.
 $= 34^{\circ} + 49' + 0.02'$ Write as a sum.
 $= 34^{\circ} + 49' + 0.02(60'')$ $1' = 60''$
 $= 34^{\circ} + 49' + 1.2''$ Write as a sum.
 $\approx 34^{\circ} 49' \ 01''$ Approximate to the nearest second.

Q7. (6 points): (5.1 Textbook Example 5): Find the angle of least positive measure that are coterminal with each angle.

(b):
$$-75^{\circ}$$

Solution:

(a) Subtract 360° as many times as needed to obtain an angle with measure greater than 0° but less than 360°. Since

$$908^{\circ} - 2 \cdot 360^{\circ} = 188^{\circ}$$

an angle of 188° is coterminal with an angle of 908°. See Figure 11.

Figure 11

Figure 12

(b) See Figure 12. Use a rotation of

$$360^{\circ} + (-75^{\circ}) = 285^{\circ}$$
.

(c) The least integer multiple of 360° greater than 800° is

$$360^{\circ} \cdot 3 = 1080^{\circ}$$
.

Add 1080° to -800° to obtain

$$1080^{\circ} + (-800^{\circ}) = 280^{\circ}.$$

Math 002 Test I, (Chapters: 4,1 to 6.2) Instructor: Sayed Omar, Term 132 Page 4 of 6 Code A

Q8. (4 points): (5.2 Textbook Example 10):

Find $\sin \theta$ and $\tan \theta$, given $\cos \theta = -\frac{\sqrt{3}}{4}$ and $\sin \theta > 0$.

Solution:

$$\sin^2\theta + \left(-\frac{\sqrt{3}}{4}\right)^2 = 1 \qquad \text{Replace } \cos\theta \text{ with } -\frac{\sqrt{3}}{4}.$$

$$\sin^2\theta + \frac{3}{16} = 1 \qquad \text{Square } -\frac{\sqrt{3}}{4}.$$

$$\sin^2\theta = \frac{13}{16} \qquad \text{Subtract } \frac{3}{16}.$$

$$\sin\theta = \pm\frac{\sqrt{13}}{4} \qquad \text{Take square roots. (Section 1.4)}$$

$$\sin\theta = \frac{\sqrt{13}}{4} \qquad \text{Choose the positive square root since } \sin\theta \text{ is positive.}$$

To find $\tan \theta$, use the quotient identity $\tan \theta = \frac{\sin \theta}{\cos \theta}$.

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{\sqrt{13}}{4}}{\frac{\sqrt{3}}{4}} = \frac{\sqrt{13}}{4} \left(-\frac{4}{\sqrt{3}} \right) = -\frac{\sqrt{13}}{\sqrt{3}}$$
$$= -\frac{\sqrt{13}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = -\frac{\sqrt{39}}{3}$$
 Rationalize the denominator.

Q9. (4 points): (5.3 Textbook Example 4): Find the reference angle for each angle:

(a): 218°

(b): 1387°

Solution:

(a) As shown in Figure 34(a), the positive acute angle made by the terminal side of this angle and the x-axis is

$$218^{\circ} - 180^{\circ} = 38^{\circ}$$
.

For $\theta = 218^{\circ}$, the reference angle $\theta' = 38^{\circ}$.

(b) First find a coterminal angle between 0° and 360°. Divide 1387° by 360° to get a quotient of about 3.9. Begin by subtracting 360° three times (because of the whole number 3 in 3.9).

$$1387^{\circ} - 3 \cdot 360^{\circ} = 1387^{\circ} - 1080^{\circ}$$
 Multiply. (Section 5.1)
= 307° Subtract.

The reference angle for 307° (and thus for 1387°) is

$$360^{\circ} - 307^{\circ} = 53^{\circ}$$
.

Q10. (4 points): (5.4 Recitation Question 3):

A ladder of 6 meters length is placed against a wall forms an angle of 30° with the ground. If the foot of the ladder is moved towards the wall, the angle changed to 45° . Find the exact distance moved by the top of the ladder on the wall.

Solution:

$$\sin 30^{\circ} = \frac{x}{6} \implies \boxed{x=3}$$

$$\sin 45^{\circ} = \frac{x+y}{6} \implies x+y=3\sqrt{2} \implies y=3\sqrt{2}-3=3\left(\sqrt{2}-1\right)$$

Q11. (4 points): (6.1 Recitation Question 4):

Find the length s of the arc that subtends the central angle $\theta = 35^{\circ} 30'$ in a circle of diameter 720 centimeters.

Solution:

$$\theta = 35^{\circ} 30' = 35^{\circ} + \left(30'\right) = 35^{\circ} + \left(\frac{30}{60}\right)^{\circ} = 35^{\circ} + \left(\frac{1}{2}\right)^{\circ} = \frac{71^{\circ}}{2} = \frac{71^{\circ}}{2} \cdot \frac{\pi}{180^{\circ}} = \frac{71\pi}{360} \text{ radinas}$$

$$s = r \theta = \frac{720}{2} \cdot \frac{71\pi}{360} = 71\pi \text{ centimeters}$$

Q12. (4 points): (6.2 Textbook Exercises 14 and 19): Find the exact value of

$$\tan\left(-\frac{17\pi}{3}\right) + \sec\frac{23\pi}{6}$$
: (Show your work)

Solution: First, we find the value of $\tan\left(-\frac{17\pi}{3}\right)$:

14.
$$-\frac{17\pi}{3}$$
 is coterminal with

$$-\frac{17\pi}{3} + 6\pi = -\frac{17\pi}{3} + \frac{18\pi}{3} = \frac{\pi}{3}$$
. Since $\frac{\pi}{3}$ is

in quadrant I, $\frac{\pi}{3}$ is the reference angle. In

quadrant I, the tangent is positive. Thus,

$$\tan\left(-\frac{17\pi}{3}\right) = \tan\frac{\pi}{3} = \sqrt{3}$$
. Converting $\frac{\pi}{3}$ to

degrees, we have $\frac{\pi}{3} = \frac{1}{3}(180^{\circ}) = 60^{\circ}$. Thus,

$$\tan\frac{\pi}{3} = \tan 60^\circ = \sqrt{3}.$$

Now, we find the value of $\sec \frac{23\pi}{6}$.

Math 002 Test I, (Chapters: 4,1 to 6.2) Instructor: Sayed Omar, Term 132 Page 6 of 6 Code A

19.
$$\frac{23\pi}{6}$$
 is coterminal with

$$\frac{23\pi}{6} - 2\pi = \frac{23\pi}{6} - \frac{12\pi}{6} = \frac{11\pi}{6}$$
. Since $\frac{11\pi}{6}$ is

in quadrant IV, the reference angle is

$$2\pi - \frac{11\pi}{6} = \frac{12\pi}{6} - \frac{11\pi}{6} = \frac{\pi}{6}$$
. In quadrant IV,

the secant is positive. Thus,

$$\sec \frac{23\pi}{6} = \sec \frac{11\pi}{6} = \sec \frac{\pi}{6} = \frac{2\sqrt{3}}{3}.$$

Converting $\frac{11\pi}{6}$ to degrees, we have

$$\frac{11\pi}{6} = \frac{11}{6} (180^\circ) = 330^\circ$$
. The reference angle is

$$360^{\circ} - 330^{\circ} = 30^{\circ}$$
. Thus,

$$\sec \frac{23\pi}{6} = \sec \frac{11\pi}{6} = \sec 330^\circ = \sec 30^\circ = \frac{2\sqrt{3}}{3}$$
.

$$\tan\left(-\frac{17\pi}{3}\right) + \sec\frac{23\pi}{6} = \sqrt{3} + \frac{2\sqrt{3}}{3} = \frac{5\sqrt{3}}{3}$$