IR laser ablative desulfurization of poly(1,4-phenylene sulfide)

Sardar M.A. Durani ^a, Ehsan E. Khawaja ^a, Husain M. Masoudi ^a, Zdeněk Bastl ^b, Jan Šubrt ^c, Anna Galíková ^d, Josef Pola ^{d,*}

^a Center for Applied Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia ^bJ. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, 18223 Prague, Czech Republic ^c Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, 25068 Řež, Czech Republic ^d Laser Chemistry Group, Institute of Chemical Process Fundamentals, Academy of Sciences of the Czech Republic, 16502 Prague, Czech Republic

Received 7 September 2004; accepted 13 January 2005 Available online 13 March 2005

Abstract

Pulsed infrared laser-induced ablation (PLAD) of poly(1,4-phenylene sulfide) (PPS) results in the extrusion of sulfur and deposition of thin films that are a blend of initial PPS and sulfur-polyaromatic polymer composite. The process is demonstrated to differ from the conventional heating which leads to a solid material with S content and bonding similar to those in PPS. The PLAD of PPS thus represents a unique example of the desulfurization of S-containing polyaromatic materials.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Poly(1,4-phenylene sulfide); Laser ablation; Desulfurization