Difference between bulk and thin film densities of metal oxide and fluoride films studied by NRA depth profiling techniques A. Coban *, E.E. Khawaja, S.M.A. Durrani Department of Physics, Center for Applied Physical Sciences, King Fahd University of Petroleum and Minerals, Research Institute, Box 2044, Dhahran 31261, Saudi Arabia Received 17 July 2001; received in revised form 8 January 2002 ## Abstract Nuclear reaction analysis techniques have been used to study the difference between bulk and thin film densities of different dielectric (WO₃, MgF₂, NdF₃, LaF₃ and ThF₄) thin films. Thicknesses of the films were measured by optical methods. The ¹⁸O(p, α)¹⁵N reaction was used at 730 keV to profile WO₃ prepared with different thicknesses on a tantalum backing by thermal evaporation of natural WO₃. We have also successfully tested the ¹⁸O(p, α)¹⁵N reaction at the 629 keV (Γ = 2.1 keV) resonance for the same purpose. Excitation function measurements of the reaction was performed around the resonant energy at a detection angle of 150°. In order to obtain the oxygen profiles of the thin films non-resonant part of the excitation function was deconvoluted using the known cross-section data of the reaction. Also, we studied different films of MgF₂, NdF₃, LaF₃ and ThF₄ using the 483.85 keV resonance in the ¹⁹F(p, α γ)¹⁶O reaction. @ 2002 Elsevier Science B.V. All rights reserved. PACS: 29.90.+r Keywords: NRA resonant depth profiling; Thin film; Film density; Bulk density