Angular distribution measurements of ⁶Li(p, α)³He reaction at 140 keV proton energy using nuclear track detectors

M.I. Al-Jarallah^{a,*}, A.A. Naqvi^b, F.A. Abu-Jarad^b, Fazal-ur-Rehman^a, S.M.A. Durrani^b, S. Kidwai^a

^a Physics Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
^b Center for Applied Physical Sciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia

Received 28 August 2000; received in revised form 7 December 2000; accepted 13 December 2000

Abstract

Angular distributions of a $^6\text{Li}(p,\alpha)^3\text{He}$ reaction were measured at six angles for 140 keV proton energy using nuclear track detectors (NTDs). The measurements were carried out over $60^\circ-160^\circ$ lab. angles in 20° increments using a scattering chamber of 80° beam line of the 350 kV accelerator. A semiconductor silicon surface barrier (SSB) detector was placed at $+160^\circ$ and was used as a monitor. The results have shown that the CR-39 detector has excellent capabilities to distinguish 1.4-2.7~MeV $\alpha+3^\circ$ He particles from the $^6\text{Li}(p,\alpha)^3$ He reaction and 8-9.4~MeV α -particles from the $^7\text{Li}(p,\alpha)^4$ He reaction through their track diameters. However, it was not possible to distinguish between the $2.3~\text{MeV}^3$ He ions and the $1.7~\text{MeV}^4$ He ions from the $^6\text{Li}(p,\alpha)^3$ He reaction from their track diameter measurements, but it was possible to differentiate between the two, from the darker contrast of the 3 He particles caused by its deeper tracks as compared to those of 4 He. © 2001 Elsevier Science Ltd. All rights reserved.

Keywords: Angular distribution of ⁶Li(p, α); Nuclear track detectors; ⁷Li(p, α)