Questions Chapter 1 Measurement

- 1-1 Measuring Things
- 1-2 The International System of Units
- **1-3 Changing Units**
- 1-4 Dimensional Analysis
- 1-5 Significant Figures
- 1-6 Order-of-Magnitude Calculations

1-7 Density

Express speed of sound, 330 m/s in miles/h (1 mile = 1609 m)

- A) 147 miles/h
- B) 330 miles/h
- C) 738 miles/h
- D) 0.205 miles/h
- E) 980 miles/h

Answer C

1 shake = 10^{-8} seconds. Find out how many nano seconds (ns) are there in 1 shake. (1 nano = 10^{-9})

- A) 0.1 ns
- B) 0.01 ns
- C) 100 ns
- D) 0.001 ns
- E) 10 ns

Answer E

How many molecules of water are there in a cup containing 250 cm³ of water?

Molecular mass of $H_2O = 18$ g/mole

Density of water = 1.0 g/cm^3

Avogadro s number = 6.02×10^{23} molecules/mole

A) 6.0×10^{23}

B) 8.4×10^{24}

C) 1.9×10^{26}

D) 3.7×10^{28}

E) 2.5×10^3

Answer B

Using the fact that the speed of light in space is about 3.00 x 10⁸ m/s, determine how many miles light will travel in one hour.

```
(1 \text{ mile} = 1.61 \text{ km})
```

A)6.71x108 miles

B)2.50x10⁶ miles

C)5.40x109 miles

D)8.32x10³ miles

E)4.83x10² miles

Answer A

1-4 Dimensional Analysis M1-062

Suppose

$$A = \frac{B^n}{C^m}$$

where A has dimensions LT, B has dimensions L²T⁻¹, and C has dimensions LT². Then the exponents n and m have the values:

- A) n = 1/5; m = 3/5
- B) n = 2; m = 3
- C) n = 4/5; m = -1/5
- D) n = 1/5; m = -3/5
- E) n = 1/2; m = 1/2

Answer D

1-4 Dimensional Analysis M1-071

The position x of a particle is given by: $x = B t^2 + \frac{C}{B}t$

where *x* is in meters and *t* is in seconds. The dimension of *C* is:

- $\mathsf{A)} \quad \frac{L^2}{T^3}$
- B) $\frac{L}{T}$
- C) L
- D) *T*
- E) $\frac{L}{T^2}$

Answer A

From the fact that the average density of the Earth is 5.50 g/cm^3 and its mean radius is 6.37 ×10⁶ m, the mass of the Earth is:

- A) $7.01 \times 10^{17} kg$
- B) $3.98 \times 10^{21} kg$
- C) $5.95 \times 10^{24} kg$
- D) 2. $80 \times 10^{18} kg$
- E) $5.50 \times 10^{23} \, kg$

Answer C

An aluminum cylinder of density 2.70 g/cm³, a radius of 2.30 cm, and a height of 1.40 m has the mass of:

- A) 25.0 kg
- B) 45.1 kg
- C) 13.8 kg
- D) 8.50 kg
- E) 6.28 kg

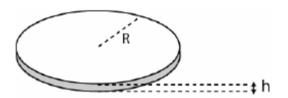
Answer E

A nucleus of volume 3.4×10^3 fm³ and mass of 1.0×10^2 u has a density of:

$$(1 \text{ fm} = 10^{-15} \text{ m}, 1 \text{ u} = 1.7 \text{ x} 10^{-27} \text{ kg})$$

- A) $5.0 \times 10^{16} \text{ kg/m}^3$
- B) $1.0 \times 10^3 \text{ kg/m}^3$
- C) $3.4 \times 10^{14} \text{ kg/m}^3$
- D) $12 \times 10^3 \text{ kg/m}^3$
- E) $3.6 \times 10^{13} \text{ kg/m}^3$

Answer A


A cylindrical can, 6.00 inches high and 3.00 inches in diameter is filled with water. Density of water is 1.00 g/cm^3 . What is the mass of water in the can in gram? (1 inch = 2.54 cm).

- A) 277 g
- B) 695 g
- C) 182 g
- D) 107 g
- E) 2780 g

Answer B

A drop of oil (mass = 0.90 milligram and density = 918 kg/m³) spreads out on a surface and forms a circular thin film of radius = 41.8 cm and thickness h. Find h in nano meter (nm). (1 nano = 10^{-9})

- A) 0.60 nm
- B) 0.00060 nm
- C) 0.15 nm
- D) 1.8 nm
- E) 0.030 nm

Answer D