Chapter 9 (Center of Mass and Linear Momentum)

- 1- Three identical particles each of mass = 1 kg are placed in the xy plane. The position vector of the first is $\mathbf{r_1} = (1\mathbf{i} + 4\mathbf{j})$ m and the second is $\mathbf{r_2} = (3\mathbf{i} + 1\mathbf{j})$ m. What would be the position vector of the third particle if the center of mass of the three particles were at (3 m, 3 m)?
- a. $\mathbf{r_3} = (5\mathbf{i} + 4\mathbf{j}) \text{ m}$, b. $\mathbf{r_3} = (3\mathbf{i} 1\mathbf{j}) \text{ m}$, c. $\mathbf{r_3} = (1\mathbf{i} + 2\mathbf{j}) \text{ m}$, d. $\mathbf{r_3} = (2\mathbf{i} 6\mathbf{j}) \text{ m}$, e. $\mathbf{r_3} = (4\mathbf{i} + 3\mathbf{j}) \text{ m}$
- **2-** An object at rest explodes into three pieces A, B and C. After the explosion, A has a mass of 2.0 kg and velocity (3.0i) m/s, B has a mass of 3.0 kg and velocity (-1.0j) m/s, and C has a mass of 1.0 kg and velocity v. Find the velocity v.
- a. (-6i + 3i) m/s, b. (3i + 6i) m/s, c. (6i 3i) m/s, d. (6i + 3i) m/s, e. (3i 6i) m/s
- **3** Three particles are placed in the xy plane. A 4-gram particle is located at (3, 4) m, and a 6-gram particle is located at (-2, -6) m. Where must a 2-gram particle be placed so that the center of mass of this three-particle system is located at the origin?
- a. (0, 10) m, b. (6, -2) m, c. (5, 10) m, d. (9, 16) m, e. (-2, 4) m
- **4-** A 2.0-kg particle has a velocity of 4.0 m/s in the positive x direction and a 3.0-kg particle has a velocity of 5.0 m/s in the positive y direction. What is the speed of their center of mass?
- a. 3.4 m/s, b. 3.8 m/s, c. 5.0 m/s, d. 4.4 m/s, e. 4.6 m/s
- 5- Two masses, 5 kg each, have velocities (in m/s): V1 = 12 i 16 j and V2 = -20 i + 14 j. Determine the momentum of the center mass of the two masses (in kg m/s).
- a. 40 i 10 j, b. 160 i -150 j, c. 40 i + 10 j, d. 40 i 10 j, e. 160 i + 150 j
- **6-** A uniform wire of mass M and length 2 m is bent to be all in one plane (see the figure). Find its center of mass with respect to point O.

a. (0, 1/8), b. (-1, 1/8), c. (1/2, 1/3), d. (1/8, 3/8), e. (1/3, 1/3)

Y

1/2 m

1/2 m

O

Summary of Chapter 9 topics

- 1- Understanding the Center of mass, Newton's second law for a system of particles
- 2- Understanding the Linear momentum, collision, and impulse
- 3- Understanding the conservation of linear momentum, kinetic energy in a collision
- 4- Understanding the collisions in 1-D and 2-D