
Chapter 13 (Gravitation)

- **1** A uniform spherical shell is made of copper. Its inner and outer radii are 0.50 m and 0.75 meter, respectively. The gravitational force exerted by this shell on a particle of mass m:
- **a**. is zero if it is placed at 0.4 m from its center, **b**. is zero if it is placed in contact with its outer surface, **c**. is maximum if it is placed at its center, **d**. is maximum if it is placed in contact with its inner surface, **e**. is zero if it is placed at a point 0.65 m from the center
- **2-** Three particles with equal mass M = 1.0 kg are located at (0,0), (4,0) and (0,4) where the x and y coordinates are in meters. Find the magnitude of the gravitational force exerted on the particle located at the origin by the other two particles. (A: 5.9×10^{-12} N)
- 3- A moon is moving in a circular orbit around a planet with a period of 10^4 s. Find the mass of the planet if the radius of the orbit is 10^7 m. (A: 5.9×10^{24} kg)
- **4-** Three particles with equal mass M = 1.0 kg are located at (0,0), (4,0) and (0,4) where the x and y coordinates are in meters. Find the potential energy of the system. (A: -4.5×10^{-11} J)
- **5** A rocket is fired vertically from Earth's surface. It reaches a maximum altitude h = 4.0 Re (Re = radius of Earth) above the surface of Earth. Find the initial speed of the rocket (Re = $6.37 \times 10^6 \text{ m}$ and mass of Earth Me = $5.98 \times 10^{24} \text{ kg}$). (A: 10 km/s)
- **6** At what altitude (in Earth's radii) above the surface of the Earth would the acceleration of gravity be 1/8 of that on the surface? (A: 1.83 Re)
- 7- A satellite is observed to orbit a large planet close to its surface with a period of 6.0 hours. Find the average mass density of the planet. Assume the planet is spherical. (A: 303kg/m³)
- **8-** A 100 kg spaceship is in circular orbit of radius 1.38 x 10^7 m around the Earth. How much energy is required to transfer the spaceship to a circular orbit of radius 1.92×10^7 m? (A: 4.08×10^8 J)
- **9** The planet Mars has a satellite which travels in a circular orbit of radius 9.4×10^6 m, with a period of 2.754×10^4 s. Calculate the mass of Mars from this information. (A: 6.48×10^{23} kg)
- **10** Two spheres, each of mass 6.4 kg, are fixed at points A and B. Find the Magnitude and direction of the initial acceleration of a sphere of mass 0.01 kg if released from rest at point p and acted only by forces of gravitational attraction of the spheres A and B.

(A: $-0.5 \times 10^{-7} \text{ J m/s}^2$)

Summary of Chapter 13 topics

- 1- Understanding the Newton's law, Principle of superposition, Gravitation near Earth
- 2- Understanding the Gravitation Inside Earth, Gravitational potential energy.
- 3- Understanding the Kepler's laws, Satellites.