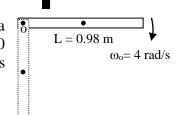
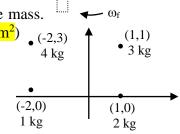

Chapter 10 (Rotation)


- **1** A disk of radius 20 cm rotating at 42 rad/s stops (assume constant deceleration) after 10 s. Through how many radians does the disk turn during this time? (A: 210 rad)
- **2-** A disk is rotating about an axel through its center O when two forces $F_1 = 10$ N and $F_2 = 15$ N are applied on it as shown in Fig. The moment of inertia of the disk about O is 0.036 kg.m². If the system starts from rest, find the angular speed at time = 3.0 s. (A: 100 rad/s)


- 3- A torque of 80 N.m applied to a pulley increases its angular speed from 45 rev/min to 180 rev/min in 3 seconds. Find the moment of inertia of the pulley? (A: 17 kg.m²)
- **4-** A wheel has a moment of inertia 12 kg.m² about its axis of rotation. As it turns through 5.0 rev, its angular velocity increases from 5.0 rad/s to 6.0 rad/s. If the net torque about the axis of rotation is constant, its value is: (A: 2.1 N.m)
- 5- A disk has a moment of inertia 6.0 kg.m^2 about a fixed axis of rotation. It has a constant angular acceleration of 2.0 rad/s^2 . If it starts from rest, the work done during the first 5.0 s by the net torque on it is: (A: 300 J)
- **6** A wheel, starting from rest, turns through 8.0 revolutions in a time interval of 17 s. Assuming constant angular acceleration, what is the angular speed of the wheel at the end of this time interval? (A: 5.9 rad/s)
- 7- Four identical particles, each with mass m, are arranged in the xy plane as shown in figure. They are connected by light rods to form a rigid body. If m=2.0 kg and a=1.0 m, the moment of inertia of this system about the y-axis is: (A: 12 kg.m²)


8- A wheel with a moment of inertia of 5.0 kg.m² and a radius of 0.25 m rotates a fixed axis perpendicular to the wheel and through its center as shown in figure 10. force of 2.0 N is applied tangentially to the rim. As the wheel rotates through one revolution, what is the work done by the force? (A: 3.14 J)

9 - A uniform rod of length L= 0.98 m and mass M=3.0 kg is free to rotate on a frictionless pin through one end (See Fig). The rod has an angular speed of 4.0 rad/s when it was in the horizontal position. What is the angular speed at its lowest position? (A: 6.8 rad/s)

10- The four particles in Fig (6) are connected by rigid rods of negligible mass. Calculate the moment of inertia of this system about the x axis. (A: 63 kg.m²)

Summary of Chapter 10 topics

- 1- Understanding the Rotational Variables, Const. angular acceleration, Linear to rotation.
- 2- Understanding the Kinetic Energy and Rotational Inertia
- 3- Understanding the Torque, Newton's 2nd Law and Work in Rotational Motion