Faraday's Law of Induction

Q1. Consider a circular loop of radius $\mathrm{R}=20 \mathrm{~cm}$ lying in the x - y plane. There is throughout the region a uniform magnetic field given by: $\mathrm{B}=(5.0 \mathrm{i}+4.0 \mathrm{j}+3.0 \mathrm{k}) \mathrm{T}$.
Calculate the magnetic flux though the loop.Ans: $0.38 \mathrm{Tm}^{2}$
Q2. A uniform magnetic field $B=(2.0 \mathrm{i}+4.0 \mathrm{j}+5.0 \mathrm{k}) \mathrm{T}$ intersects a circular surface of radius 2 cm lying in the yz plane. What is the magnetic flux through this surface? Ans: $2.5 \times 10^{-3} \mathrm{Tm}^{2}$
Q3. Consider a cube of side $\mathrm{L}=10 \mathrm{~cm}$ positioned as shown in Figure 6. Throughout the region, There is a magnetic field $B=(4.0 \mathrm{i}+5.0 \mathrm{j}-6.0 \mathrm{k}) \mathrm{T}$. Calculate the magnetic flux through the shaded face of the cube. Ans:- $-0.06 \mathrm{Tm}^{2}$

Q4. A constant magnetic flux of $4.0 \times 10^{-5} \mathrm{~Wb}$ is maintained through a coil for 0.5 s . What emf is induced in the coil by this flux during that period?Ans:Zero.
Q5. A 2.0 Tesla uniform magnetic field makes an angle of 60 degrees with the xy-plane. The magnetic flux through an area of $3 \mathrm{~m}^{2}$ portion of the xy-plane is:Ans:5.2 Wb.
Q6. Figure 12 shows a conducting loop consisting of a half circle of radius 0.20 m and three straight sections. The loop lies in a uniform magnetic field that is directed as shown in the figure and is given by: $B=4.5 t^{2}-10 t$, with B in tesla and t in seconds. What is the magnitude of the induced emf at $t=10 \mathrm{~s}$? Ans:8.2 V

Figure 12
Q7. A 400 -turn coil of total resistance 6.0 ohm has a cross sectional area of $30 \mathrm{~cm}^{2}$. How rapidly should a magnetic field parallel to the coil axis change in order to induce a current of 0.3 A in the coil?Ans:1.5 T/s.
Q8. A circular wire loop of area $0.5 \mathrm{~m}^{2}$ is perpendicular to a magnetic field of 0.8 T . If the coil is removed completely from the field in 0.1 s , the average emf induced in the loop has a magnitude:Ans:4.0 V.

Lenz's Law

Q9. A plane loop of wire consisting of a single turn of cross- sectional area $0.20 \mathrm{~m}^{2}$ is perpendicular to a magnetic field that increases uniformly in magnitude from 0.25 T to 3.25 T in a time of 2.0 s . What is the resistance of the coil if the induced current has a value of 2.0 A?Ans:0.15 Ohm.
Q10.Each turn of a 100 -turn coil, whose resistance is 60 Ohm , encloses an area of $80 \mathrm{~cm}^{2}$. What should be the rate of change of a magnetic field parallel to its axes in order to induce a current of 1 mA in the coil?Ans:0.075 T/s. Q11. A flat coil of wire consisting of 20 turns, each with an area of $50 \mathrm{~cm}^{2}$, is positioned perpendicularly to a uniform magnetic field that increases its magnitude at a constant rate from 2.0 T to 6.0 T in 2.0 s . If the coil has a total resistance of 0.4 ohms, what is the magnitude of the induced current in the coil?Ans:0.5 A
Q12. The square circuit shown in Figure 8 is in a uniform magnetic field directed into the page and is decreasing at a rate of $1.5 \mathrm{~T} / \mathrm{s}$. Calculate the induced current in the circuit if the resistance of the wire 10 ohms. Ans:2.16 milli-A

Figure 8

Induction and Energy Transfers

Q13. In the arrangement shown in Figure (7), a conducting bar moves to the right. Assume $\mathrm{R}=10 \mathrm{Ohm}, \mathrm{L}=0.5 \mathrm{~m}$, and that a uniform 3.5 T magnetic field is directed into the page. Neglect the mass of the bar, find the power dissipated in the resistor such that the bar moves to the right with a constant speed of $4.0 \mathrm{~m} / \mathrm{s}$? Ans:4.9 W.

Figure \# 7

Q14. A conducting rod of length 1.2 m is moving with a speed of $10 \mathrm{~m} / \mathrm{s}$ as shown in Figure 9. If the magnetic field is 0.55 T into the page, calculate the potential difference between the ends of the rod. Ans: 6.6 V

Q15. Figure 7 shows a conducting bar moving with a constant speed of $5.0 \mathrm{~m} / \mathrm{s}$ to the right. Assume that $\mathrm{R}=5.0$ Ohms, $\mathrm{L}=0.20 \mathrm{~m}$, and that a uniform magnetic field of 3.5 T is directed into the page. Calculate the magnitude of the applied force pulling the bar.(Neglect the mass of the bar.) Ans:0.49 N

Q16. The square coil shown in figure 12 is 20 cm on a side and has 15 turns of wire on it. It is moving to the right at $2 \mathrm{~m} / \mathrm{s}$. Find the induced emf in it at the instant shown, and the direction of the induced current in the coil. (The magnetic field is 0.2 T and its direction is out of the page.) Ans:1.2 V, clockwise

Figure 12

