Chapter 29 - Magnetic Fields Due to Currents

Magnetic Field Due to Currents

Q1. A segment of wire is formed into the shape shown in Figure (5) and carries a current I. What is the magnitude of the resulting magnetic field at the point P? Ans:3 $\mu \mathrm{I} / 8 \mathrm{R}$.

Figure \# 5
Q2. Three long wires parallel to the x -axis carry currents as shown in Fig. 6. If $\mathrm{I}=20 \mathrm{~A}$, what is the magnitude of the magnetic field at the origin? Ans:12 micro T.

Figure \# 6
Q3. What is the magnitude of the magnetic field at point P due to the current carrying wire shown in Figure 7, if $\mathrm{I}=2.0 \mathrm{~A}, \mathrm{a}=20 \mathrm{~cm}$ and $\mathrm{b}=2 \mathrm{a}$? Ans: 0.8 micro-T

Figure 7
Q4. A segment of wire is formed into the shape shown in Figure 5 and carries a current I = 1.0 A. What is the magnitude of the resulting magnetic field at the point P if $\mathrm{R}=10 \mathrm{~cm}$? Ans:5.5 micro-T into the page

Q5. Two long wires parallel to the x-axis carry currents I_{1} and I_{2} as shown in Figure 6. If $I_{1}=5 \mathrm{~A}$, what is the magnitude and direction of I_{2} if the net magnetic field at the origin is 0.35 micro-T and directed out the page. Ans: 1 A to the left

FIGURE 6

Force Between Two Parallel Currents

Q6. Figure 8 shows a cross section of three long parallel wires each carrying a current of 15 A . The currents in the wires A and C are out of the paper, while that in wire B is into the paper. If the distance a $=5.0 \mathrm{~mm}$, what is the magnitude of the force per unit length on wire C? Ans:4.5 milli-N/m

Figure 8

Q7. Two long parallel wires carrying equal currents of 10 A in opposite directions. The force per unit length of one wire on the other is $1 \mathrm{milli}-\mathrm{N} / \mathrm{m}$. If both currents are doubled, the force per unit length of one wire on the other will be:Ans: 4 milli-N/m, repulsive
Q8. Suppose that the identical currents I in figure (7) are all out of the page. The magnitude of the force per unit length on the wire at the origin is: [take $\mathrm{I}=10.0 \mathrm{~A}$, and $\mathrm{a}=1.0 \times 10^{-4} \mathrm{~m}$.] Ans: $0.28 \mathrm{~N} / \mathrm{m}$.

Q9. Three parallel wires lie in the xy-plane. The separation between adjacent wires is 0.1 m , and each wire carries a 10-A current in the same direction. Find the magnitude of the net force per unit length on one of the outer wires.Ans: $3.0 \times 10^{-4} \mathrm{~N}$.
Q10. Two parallel wires, carrying equal currents of 10 A , attract each other with a force F. If both currents are doubled, and the distance between them reduced by 50%, the new force will be:Ans:8F.

Ampere's Law

Q11. A long cylindrical wire has a radius $\mathrm{R}=2.0 \mathrm{~cm}$ and carries a current $\mathrm{I}=40 \mathrm{~A}$ that is uniformly distributed through the cross-section of the wire. What is the magnitude of the magnetic field at a point which is 1.5 cm from the axis of the wire? Ans: $3 \times 10^{-4} \mathrm{~T}$
Q12. What must be the radius R of a long current-carrying wire if the magnetic field at $\mathrm{r} 1=2.0 \mathrm{~cm}$ (inside the wire) is equal to three times the magnetic field at $\mathrm{r} 2=8.0 \mathrm{~cm}$ (outside the wire).Ans:2.3 cm Q13. A long solid cylindrical conductor of radius $\mathrm{R}=4.0 \mathrm{~mm}$ carries a current I parallel to its axis. The current density in the wire is $2 \times 10^{4} \mathrm{~A} / \mathrm{m}^{2}$. Determine the magnitude of the magnetic field at a point that is 5.0 mm from the axis of the conductor.Ans: 40 micro-T
Q14. Consider an infinitely long straight wire carrying a current I. If the magnetic field at $\mathrm{r}_{1}=2.5 \mathrm{~mm}$ inside the wire and at r2 $=10 \mathrm{~mm}$ outside the wire are equal, then the radius of the wire is:Ans: 5.0 mm . Q15. A cylindrical conductor of radius $\mathrm{R}=2.50 \mathrm{~cm}$ carries a current of $\mathrm{I}=2.50 \mathrm{~A}$ along its length. This current is uniformly distributed throughout the cross section of the conductor. Calculate the magnitude of the magnetic field at a point that is 1.25 cm from the axis of the conductor.Ans: 10.0 microTesla

Solenoids

Q16. What current in a solenoid $15-\mathrm{cm}$ long wound with 100 turns would produce a magnetic field equal to that of the earth, which is $5.1 \times 0^{-5} \mathrm{~T}$?Ans: $61 \times 10^{-3} \mathrm{~A}$.
Q17. A solenoid is formed by tightly winding a single layer of wire. The wire is 1.0 mm in diameter. What is the magnitude of the magnetic field inside the solenoid when there is a current of 0.081 A in the windings?Ans:102 micro-T.
Q18. A 500 turns solenoid is 30 cm long, has a radius of 0.5 cm and carries a current of 2.0 A . The magnitude of the magnetic field at the center of the solenoid is:Ans: $4.2 \times 10^{-3} \mathrm{~T}$
Q19. A solenoid is 3.0 m long and has a circumference of $9.4 \times 10^{-2} \mathrm{~m}$. It carries a current of 12.0 A . The magnetic field inside the solenoid is $25.0 \times 10^{-3} \mathrm{~T}$. The length of the wire forming the solenoid is:Ans:467 m.
Q20. A current of 2.5 A passes in a solenoid of length $L=50 \mathrm{~cm}$. It produces a magnetic field of $2.3 \times 10^{-3} \mathrm{~T}$ at its center. The number of turns in the solenoid is:Ans:366.

