Chapter 27-Circuits

Multi-Resistor Single Loop Circuits

Q1. A battery is connected to a resistor, and a current of 4.0 A exists in the circuit. When an additional $15-\mathrm{Ohm}$ resistor is added to the circuit in series with the original resistor, the current drops to 1.0 A . What is the emf of the battery?Ans:20 Volts.
Q2. Three resistors, of resistance 2.0 Ohm, 4.0 Ohm and 6.0 Ohm, are connected to a 24 Volt battery as shown in figure (2). The power dissipated in the 2.0 Ohm resistor is: Ans: 8 W .

Figure (2)
Q3. An electrical source with internal resistance $\mathrm{r}=2.0$ Ohm is used to operate a lamp of resistance $\mathrm{R}=$ 18 Ohm. What fraction of the total power is delivered to the lamp?Ans:0.9.

Potential Difference

Q4. In Figure 4, if $\mathrm{I}=1.5 \mathrm{~A}$ in the circuit segment shown, what is the potential difference $\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}$? Ans:22 V

Figure 4
Q. 5 In Figure 3, the current in the 3 ohms resistor is 4 A. The potential difference $V_{b}-V_{a}$ is: Ans:-28 V

Figure 3
Q6. If the current I in figure (5) is equal to 4.0 A , then the potential difference between point 1 and 2, i.e. ($\mathrm{V}_{2}-\mathrm{V}_{1}$), is: Ans:- 40 Volts.

Figure (5)
Q7. In figure 5, the current in the 5.0-ohm resistor is 3.0 A . What is the potential difference $\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}$? Ans:+ 30 V

FIGURE 5
Q8. In figure 2, a battery of emf of 12-Volt and internal resistance of $r=3.0$ Ohm is connected to a bulb of resistance R. If the bulb will light at a steady current of 0.1 A , what should the value of R be? Ans:117 Ohm.

Multi-Loop Circuits

Q9. In figure (4) $\mathrm{V}=14$ Volts, $\mathrm{R}_{1}=2-\mathrm{Ohm}, \mathrm{R}_{2}=10-\mathrm{Ohm}, \mathrm{R}_{3}=4-\mathrm{Ohm}$ and $\mathrm{R}_{4}=6-\mathrm{Ohm}$. Find the current passing through R_{1}. Ans:2 A .

Figure \# 4
Q10. In figure (1), find the magnitude and direction of the current passing through the 3 Ohm resistor.Ans:3 A, upwards.

Q11. The equivalent resistance between terminals a and b in Figure (2) is 65 Ohm. Calculate the value of the resistor R. Ans:40 Ohms

Q12. What is the power dissipated in the 3-Ohm resistor shown in Figure 3?Ans:27 W

Figure 3
Q13. Find the value of R in the circuit shown in Figure 5. Ans:5 Ohms

Figure 5

RC Circuits

Q14. A capacitor in an RC circuit is charged to 85% of its maximum value in 2.4 s . What is the time constant of this circuit?Ans:1.3 s
Q15. A 4.00 micro-F capacitor is charged to 24.0 V . Find the charge on the capacitor 4.00 milli-seconds after it is connected across a $200-\mathrm{Ohm}$ resistor.Ans:0.647 micro-C
Q16. A certain capacitor (initially uncharged), is connected in in series with a resistor and a battery. After, being charged for 10 ms the charge on the capacitor is half of its maximum value. What is the time constant (RC) of the circuit?Ans:14.4 milli-s
Q17. How long will it take a charged capacitor of $50.0 \times 10^{-6} \mathrm{~F}$ to loss 30% of its initial energy if allowed to discharge through a 40 Ohm resistor?Ans: $0.36 \times 10^{-3} \mathrm{~s}$.
Q18. The capacitor in figure (1) is initially charged to 50 V and then the switch is closed. What charge flows out of the capacitor during the first minute after the switch was closed? Ans:4.8 mC.

Figure 1
Q19. In the circuit shown in figure 3, the capacitor was initially uncharged. At time $t=0$, switch S is closed. If T denotes the time constant, the current through the 3 -ohm resistor at $\mathrm{t}=\mathrm{T} / 10$ is Ans:0.90 A.

Figure 3
Q20. The circuit in Figure 3 has been connected for a long time. Find the potential difference $\mathrm{V}_{\mathrm{b}}-\mathrm{V}_{\mathrm{a}}$. Ans: 8 V

FIGURE 3

