Chapter 26
 Current and Resistance

Electric Current

Q1. The sum of the currents entering a junction equals the sum of the currents leaving that junction is a consequence of:Ans:conservation of charge
Q2. If 4.7×10^{16} electrons pass a particular point in a wire every minute, what is the current in the wire?Ans: $1.3 \times 10^{-4} \mathrm{~A}$.
Q3. A portion of a circuit is shown in figure (6), with the values of the currents given for some branches. What is the direction and value of the current I? Ans:Down, 6 A.

Figure 6

Current Density

Q4. A cylindrical wire of radius $\mathrm{R}=2.0 \mathrm{~mm}$ has a uniform current density $\mathrm{J}=2.0 \times 10^{5} \mathrm{~A} / \mathrm{m}^{2}$. What is the current through the portion of the wire between radial distances $\mathrm{R} / 3$ and $\mathrm{R} / 2$? (see figure 1) Ans:0.35 A.

Figure 1
Q5. A conducting wire has a length of 10 m and is made of a material with a resistivity of $1.0 \times 10^{-8} \mathrm{ohm}-\mathrm{m}$. What is the current density in the wire if the potential difference between its ends is 0.50 V ? Ans:5.0 $\times 10^{6}$ $\mathrm{A} / \mathrm{m}^{2}$

Resistance and Resistivity

Q6. A $10-\mathrm{m}$ long wire has a cross section area of $0.5 \mathrm{~mm}^{2}$. The material of the wire has a resistivity of $5.0 \times 10^{-}$ ${ }^{8} \mathrm{ohm}-\mathrm{m}$ at 20 degree-C. A potential difference of 1.0 V is maintained across the ends of the wire. If the resistance changes by 0.3 ohms for a temperature change of 60 C -degree, what is the temperature coefficient of resistivity of this material?Ans:5.0 $\times 10^{-3} / \mathrm{C}$-degree
Q7. At 40 degrees-C the resistance of a gold wire is 80 Ohms. What is the resistance of the same wire at 60 degrees-C? (Alpha(gold) $=3.4 \times 10^{-3} / \mathrm{C}$-degrees).Ans:85 Ohms
Q8. A wire having a resistance of 3 Ohms is stretched so that its length is tripled while its volume remains unchanged. The resistance of the stretched wire is:Ans:27 Ohms

Ohm's Law

Q9. A hair dryer of resistance 80 ohms is plugged into a $120-\mathrm{V}$ line. The charge passing through it in one hour is:Ans:5400 coulombs.
Q10. A potential difference of 9.0 V is applied across the length of a cylindrical conductor with radius 2.0 mm . Calculate the current density if the conductor has a resistance of 90 ohms.Ans: $8.0 \times 10^{3} \quad \mathrm{~A} / \mathrm{m}^{2}$. Q11. A current of 5.0 A exists in a 10 ohms resistor for 5.0 min. How many electrons pass through any cross section of the resistor in this time?Ans: 9.4×10^{21}

Power in Electric Circuits

Q12. The filaments of two tungsten bulbs A and B are made with wires of the same length. At 110 Volts, the power dissipated from A and B are 400 W and 100 W , respectively. Ignore the variation of resistance with respect to temperature. The ratio of the diameter of filament A to the diameter of filament B is Ans:2:1.
Q13. How many electrons pass, in 10 minutes, through a light bulb rated at 30 W when it is operated at 120 V?Ans:9.4 $\times 10^{20}$ electrons
Q14. In one hour, how many electrons pass between the terminals of a $12-\mathrm{V}$ car battery when a 96 watts headlight is used?Ans: 1.8×10^{23} electrons

