Chapter 24

Electric Potential

Electric Potential Energy

Q1. A particle, of mass m and charge q, is released from rest at point A in a uniform electric field, see figure (2). The kinetic energy, due to the electric field, it attains after moving a distance y is: Ans:qEy.

Q2. Two oppositely charged parallel plates, 0.02 m apart, produce a uniform electric field between the plates. The potential energy $U(J)$ of an electron in the field varies with displacement $x(m)$ from one of the plates as shown in figure 5. What is the magnitude of the force on the electron? Ans: $7.5 \times 10^{-15} \mathrm{~N}$.

Figure 5

Electric Potential

Q3. A particle ($m=2.0$ micro-g, $q=-5.0$ micro-C) has a speed of $30 \mathrm{~m} / \mathrm{s}$ at point A and moves, under the influence of a parallel and uniform electric field, to point B where its speed became 80 m / s. What is the potential difference $[\mathrm{V}(\mathrm{B})-\mathrm{V}(\mathrm{A})]$.Ans:1.1 V . Q4. Two equal point charges $(Q=20$ micro-C) are located at the vertices of an equilateral triangle of side $a=2 \mathrm{~m}$ as shown in Figure 3. What is the work done to bring a 5 micro-C point charge from infinity to the point P? Ans:0.9 J

Figure 3

EquIpotential Surfaces

Q5. A 2 meters conducting rod is fixed perpendicularly to a uniform 200 N/C electric field. The potential difference between its ends is:Ans:Zero.

Calculating the Potential from the Field

Q6. Consider an insulating infinite plane sheet of uniform charge density sigma. The electric potential at point A is 200 V and at point B is 350 V as shown in Figure 4. What is the charge density on the plane sheet? Ans:-1.33 nano- $\mathrm{C} / \mathrm{m}^{2}$

Q7. Figure 6 shows three points X, Y and Z forming an equilateral triangle of side S in a uniform electric field of strength E. A unit positive test charge is moved from X to Y, then from Y to Z, and from Z back to X. Which one of the following correctly gives the work done by an external agent in moving the charge along the various parts of the path?
Ans:0, -ESSin(60 degrees) , + ESSin(60 degrees).

Figure 6

Potential Due to a Point Charge

Q8. A 4.0 nano-C point charge is located at the origin, and a second point charge (-5.0 nano-C) is placed on the y axis at $y=$ 60 cm . If point A is at ($45 \mathrm{~cm}, 0$) and point B is at ($80 \mathrm{~cm}, 0$), what is the potential difference between points A and B (VA VB)?Ans:20 V
Q9. Consider a metallic sphere carrying a charge of $4.0 \times 10^{-8} \mathrm{C}$ and having a potential of 400 V . Find the diameter of the sphere.Ans:1.8 m.

Q10. If an isolated metal sphere of radius $r=10 \mathrm{~cm}$ has a net charge of 4.0 micro-C. What is the potential on the surface of the sphere? [Consider $V=0$ at infinity]Ans:3.6×10 ${ }^{5}$ V.

Potential Due to a Group of Point Charges

Q11. In Figure (2), if $\mathrm{Q}=4.0 \times 10^{-9} \mathrm{C}$, what is the potential difference $V_{A}-V_{B}$? Ans:18 V.

Figure \# 2
Q12. Two point charges Q 1 and Q 2 are positioned as shown in Figure(2). If $\mathrm{Q} 1=2.0 \times 10^{-9} \mathrm{C}, \mathrm{Q} 2=-2.0 \times 10^{-9} \mathrm{C}, \mathrm{a}=3.0 \mathrm{~m}$, and b $=4.0 \mathrm{~m}$, what is the electric potential difference, VA - VB? Ans:4.8 V

Calculating the Field from the Potential

Q13. An infinite nonconducting sheet has a surface charge density $0.10 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$ on one side. How far apart are equipotential surfaces whose potentials differ by 90 V?Ans:1.6 cm.
Q14. The electric potential at points in an $x y-p l a n e$ is given by $V=4.0\left(x^{2}\right)-5.0\left(y^{2}\right)$,
where V is in volts, and x and y are in meters. What is the magnitude of the electric field at point (2.0 m, 3.0 m)? Ans:34 V/m
Q15. The electric potential at point A in an electric field is 15 V smaller than at point B. If a charge $q=-2.0 \mathrm{C}$ is moved from A to B, then the electric potential energy of this charge will:Ans:decrease by 30 J.

Electric Potential Energy of a System of Point Charges

Q16. Two charged parallel plates are separated by a distance of 3 mm . If an electron starts from rest at one plate and reaches the
other plate with a final speed of $3.7 \times 10^{6} \mathrm{~m} / \mathrm{s}$, what is the change in electric potential between the initial position and the final position of the electron?Ans:+39 V
Q17. Consider the four charges shown in Figure 5. How much work is required, by an external agent, to move the charge q to infinity. (Take q = 1.0 micro-C.) Ans:0.95 J

Figure 5

Potential of a Charged Isolated Conductor

Q18. Two conducting spheres are very far apart. The smaller sphere carries a total charge of 6 micro-C. The larger sphere has a radius twice that of the smaller sphere and is neutral $(Q=0)$. After the two spheres are connected by a thin conducting wire, the charges on the smaller and the larger spheres, respectively are:Ans:2 micro-C and 4 micro-C
Q19. Consider two concentric (thin and conducting) spherical shells. The inner has a radius $a=15 \mathrm{~cm}$ and a charge of 10 nanoC. The outer shell has a radius $b=30 \mathrm{~cm}$ and a charge of -15 nano-C. Find the electric potential on the surface of the inner shell.Ans:150 V
Q20. A solid conducting sphere of radius $R=5.0 \mathrm{~cm}$ has a charge density of $2.0 \times 10^{-6} \mathrm{C} / \mathrm{m}^{2}$ on its surface. What is the electric potential at the center of the sphere? (Take $\mathrm{V}=0$ at infinity.)Ans:1.1×10 ${ }^{4} \mathrm{~V}$

