Flux

Q1. For the electric field:E = (24 i + 30 j + 16 k) N/C,where i, j, and k are the unit vectors in the directions of x, y, and z, respectively, the electric flux through a $2.0 \mathrm{~m}^{2}$ portion of the yz plane is:Ans:48 $\mathrm{Nm}^{2} / \mathrm{C}$.
Q2. When a piece of paper is held with one face perpendicular to a uniform electric field, the electric flux is $48 \mathrm{Nm}^{2} / \mathrm{C}$. When the plane of the paper makes 30 degrees with the direction of the electric field the electric flux through it is:Ans: $24 \mathrm{Nm}^{2} / \mathrm{C}$

Flux of an Electric Field

Q3. An infinitely long line has a charge density of 7.6 nano-C/m. Calculate the electric flux through a spherical surface of radius $\mathrm{R}=$ 7.7 cm whose center, C, lies on the line charge as shown in Figure 3. Ans: 132 ($\left.\mathrm{Nm}^{2}\right) / \mathrm{C}$

m major2-001-Q0ajor2-001-Q0
Q4. If a rectangular area is turned in a uniform electric field from a position where the maximum electric flux goes through it to a position where only half the maximum flux goes through it, what is the turned angle?Ans:60 degrees

Gauss' Law

Q5. A point charge $\mathrm{Q}=6$ micro-C is placed at the center a rectangular box with dimensions $a=b=0.4 \mathrm{~m}$ and $\mathrm{c}=0.6 \mathrm{~m}$. Find the total electric flux through the surface of the box.Ans: $6.78 \times 10^{5} \mathrm{Nm}^{2} / \mathrm{C}$ Q6. Charges q and Q are placed on the x axis at $x=0$ and $x=2.0 \mathrm{~m}$, respectively. If $q=-40$ pico-C and $Q=+30$ pico-C, determine the net electric flux through a spherical surface of radius 1.0 m centered on the origin.Ans:-4.5 $\mathrm{Nm}^{2} / \mathrm{C}$

Gauss' Law and Coulomb's Law

Q7. The electric field everywhere on the surface of a hollow sphere of radius 11 cm is measured to be equal $3.8 \times 10^{4} \mathrm{~N} / \mathrm{C}$ and points radially inward towards the center of the sphere. How much charge is enclosed by this surface?Ans: $-5.1 \times 10^{-8} \mathrm{C}$.
Q8. A positive point charge q sits at the center of a hollow spherical shell. The shell, with radius R and negligible thickness, has net charge -2q. The electric field strength outside the spherical shell (at $r>R$) will be:Ans:kq/r² radially inwards.

A Charged Isolated Conductor

Q9. A point charge ($q=-10.0$ micro-C) is at the center of a metallic sphere that has a radius of 20.0 cm . The electric field 0.500 m away from the center of the sphere is found to be $-432 \mathrm{kV} / \mathrm{m}$. What is the charge density on the metallic sphere?Ans: -4.00 micro-c/m² Q10. A spherical conducting shell of inner radius r_{1} and outer radius r_{2} has a net charge of 2 micro-C. If a point charge of -4.0 micro-C is placed at the geometrical center of the spherical shell, what is the charge on the outer surface of the spherical shell? Ans:-2.0 micro-C

Applying Gauss' Law: Cylindrical Symmetry

Q11. Consider an infinitely long line of charge density 2.0 micro-C/m lying along the x-axis as shown in Figure 4. What is the ratio of electric field strength at point A to that at point B?Ans:0.50

Q12. An infinite line of charge produces an electric field of 6.0×10^{4} N / C at a perpendicular distance of 2.5 m from its axis. Calculate the linear charge density. Ans: $8.3 \times 10^{-6} \mathrm{C} / \mathrm{m}$.

Applying Gauss' Law: Planar Symmetry

Q13. Two infinite non-conducting parallel surfaces carry uniform charge densities of 0.20 nano- $\mathrm{C} / \mathrm{m}^{2}$ and -0.60 nano $-\mathrm{c} / \mathrm{m}^{2}$. What is the magnitude of the electric field at a point between the two surfaces?Ans:45 N/C
Q14. Figure 4 shows cross-sections through two large, parallel non-conducting sheets with identical distributions of negative charge. The surface charge density for each sheet is 7.00×10^{-15} $\mathrm{C} / \mathrm{m}^{2}$. What is the electric field at point A ? Ans:7.91×10-4 N / C downward

Figure 4

Applying Gauss' Law: Spherical Symmetry

Q15. Which one of the graphs shown in Figure 2 represents the variation of the magnitude of the electric field with the distance from the center of a solid charged conducting sphere of radius R in electrostatic equilibrium? Ans: \#5

Q16. Two conducting spheres are far apart. The smaller sphere carries a total charge of 4 micro-C, and the larger sphere carries a total charge of 2 micro-C. The larger sphere has a radius that is twice that of the smaller sphere. After the two spheres are connected by a thin conducting wire, the charges on the smaller and larger spheres, respectively, are:Ans:2 micro-C and 4 micro-C

