Chapter 21
Electric Charge
Q1. Suppose that isolated charges Q and q attract each other with a force F. If the separation between these charges were made half as great, each charge would then experience a force Ans:4 F.
Q2. Three charges are located as shown in Figure 1 . If $a=3.0 \mathrm{~m}, \mathrm{Q}_{1}=2.0$ micro-C, and $Q_{2}=Q_{3}=8.0$ micro-C, what is the magnitude of the electric force on charge Q_{1} ? Ans:0.011 N

Figure 1
Q3. Three points charges are located on the $x-y$ plane as follows: $Q_{1}=-10$ micro-C at $(4 \mathrm{~m}, ~ 0), \mathrm{Q}_{2}=20 \mathrm{micro-C}$ at $(0,10 \mathrm{~m})$, and Q_{3} at ($4 \mathrm{~m}, 10 \mathrm{~m}$). If the net force on Q_{1} points in the negative x-direction, find the charge Q_{3}. Ans:-16 micro-C
Q4. A charge $+2 q$ is placed at the origin and a charge $-q$ is placed at $x=$ 0.200 m on the x-axis. Where, on the x-axis, can a third charge $+q$ be placed so that the force on it is zero? Ans:0.683 m Q5. Consider three point charges, $\mathrm{Q}_{1}=\mathrm{Q}_{2}=2$ micro-C and $\mathrm{Q}_{3}=4$ micro-C, located as shown in Figure 1. Find the magnitude of the resultant force on Q_{3}. Ans: $8.5 \times 10^{-3} \mathrm{~N}$

Q6. A negative charge is placed at the center of a square. Each corner of the square has a fixed charge of $1.00 \times 10^{-6} \mathrm{C}$. If the resulting force acting on each charge is zero, the magnitude of the negative charge is:Ans: $0.96 \times 10^{-6} \mathrm{C}$.
Q7. Two neutral metal spheres are separated by 0.3 km . How much electric charge must be transferred from one sphere to the other so that their electrical attraction is 10^{3} N?Ans:0.1 C. Q8. A charge of $+3.2 \times 10^{-6} \mathrm{C}$ is placed at the origin. A second charge $\left(\mathrm{q}_{2}\right)$ is placed at $x=3.0 \mathrm{~m}$. If a charge of $1.0 \times 10^{-6} \mathrm{C}$ experiences no force if placed at $x=4.0 \mathrm{~m}$, then q_{2} is:Ans:- $0.2 \times 10^{-6} \mathrm{C}$. Q9. Two small charged objects repel each other with a force F when separated by a distance d. If the charge on each object is reduced to onefourth of its original value and the distance between them is reduced to d/2 the force becomes:Ans:F/4.

Q10. Two fixed particles, of charges $q_{1}=+1.0 \times 10^{-6} \mathrm{C}$ and $q_{2}=-9.0 \times 10^{-6} \mathrm{C}$, are 10 cm apart. How far from each should a third charge be located so that no net electrostatic force acts on it?Ans:5 cm from q_{1} and 15 cm from q_{2}.
Q11. A mass with a charge "Q" is suspended in equilibrium from a beam balance. A point charge $q=+10$ micro-C is then fixed at a distance d = 5.0 cm below "Q" and an extra mass $\mathrm{m}=4.0 \mathrm{~g}$ has to be placed on the pan to obtain equilibrium, see figure (3). Find the value of the charge "Q".Ans:- $1.1 \times 10^{-9} \mathrm{C}$.

Figure 3
Q12. Two point charges q_{1} and q_{2} lie along the x-axis. $q_{1}=+16.0$ microCoulombs is at $x=2.00 \mathrm{~m}$ and $\mathrm{q}_{2}=+9.00$ micro-Coulombs is at the origin. Where a negative charge q3 must be placed on the x-axis such that the net electrostatic force on it is zero? Ans:x = + 0.857 m Q13. Consider two identical conductor spheres, A and B. Initially, sphere A has a charge of -80 Q and Sphere B has a charge of +20 Q. If the spheres touched and then are separated by a distance of 0.3 m , what is the resultant force between them? [Take $\left.\mathrm{Q}=5.7 \times 10^{-8} \mathrm{C}\right]$ Ans:0.3 N , repulsive. Q14. In figure 3, $\mathrm{Q}=60$ micro-C, $\mathrm{q}=20 \mathrm{micro-C}, \mathrm{a}=3.0 \mathrm{~m}$, and $\mathrm{b}=4.0$ m . Calculate the total electric force on q. [i and j are the unit vectors in the positive direction of x-axis and y-axis, respectively]. Ans:0.69 i (N).

Q15. In figure (1), if $Q=30$ micro-C, $q=5.0$ micro-C and $d=0.3 \mathrm{~m}$, find the net force on q. [i and j are the unit vectors in the positive direction of x-axis and y-axis, respectively]. Ans:zero.

Fleme 1
Q16. What is the electric force between two protons which are separated by $1.6 \times 10^{-15} \mathrm{~m}$. Ans: 90 N , repulsive.
Q17. Two positive charges (+8.0 C and +2.0 C) are separated by 300 m . A third charge is placed a distance r from the +8.0 C charge so that the resultant electric force on the third charge due to the other two charges is zero. The distance r is Ans:200 m.

