Measuring Temperature
Q1. In a constant-volume gas thermometer, the pressure is 0.019 atm at 100 degrees Celsius. Find the temperature when the pressure is 0.027
atm.Ans:257 degrees Celsius

Temperature Scales

Q2. Fahrenheit and Kelvin scales agree at a reading of:Ans:574. Q3. A new temperature scale is called Z. On that scale, the boiling point of water is 150 degree Z and the freezing point is - 10 degree Z. Find the corresponding 70 degree Z in degree $C . A n s: 50$ degree C. Q4. It is recommended to use a new temperature scale called Z. On Z scale, the boiling point of water is 65.0 degrees Z and the freezing point is -15.0 degrees Z. To what temperature on the Fahrenheit scale would a temperature of -100 degrees Z correspond? [Note: both scales are linear]Ans:-159 Degrees Fahrenheit.

Thermal Expansion

Q5. A certain rod has a length of 25.0000 cm when measured at a room temperature of 22 degrees C. When the length of the rod is measured at 26 degree C it was found to be 25.0024 cm . The linear expansion coefficient of the rod material must be Ans: 2.4×10^{-5} (C degree) ${ }^{-1}$. Q6. Consider a steel plate with area $2.0 \mathrm{~m}^{2}$ at 20 degrees Celsius. What is magnitude of the change in its area when the temperature is lowered to -20 degrees Celsius? The coefficient of linear expansion of steel $\left(\right.$ alpha $=11.7 \times 10^{-6} /$ Celsius degrees.Ans: $1.9 \times 10^{-3} \mathrm{~m}^{2}$
Q7. Calculate the change in the length of a 2.0 m aluminum thin wire if its temperature is changed by 54 F -degrees. (the coefficient of thermal expansion for aluminum is equal to $23 \times 10^{-6} /$ C-degrees).Ans:1.4 mm

The Absorption of Heat by Solids and Liquids

Q8. A $20-\mathrm{g}$ ice cube at 0 degree C is heated until 15 g has become water at 100 degree and 5.0 g has been converted to steam. How much heat is added to do this? (L(melting) $=80 \mathrm{cal} / \mathrm{g}, \mathrm{L}($ vaporization) $=540 \mathrm{cal} / \mathrm{g}$, $\mathrm{c}($ water $)=1 \mathrm{cal} / \mathrm{g} / \mathrm{C})$. Ans: $6.3 \times 10^{3} \mathrm{cal}$.
Q9. Copper pellets, each of mass 1.0 g , are heated to 100 degrees Celsius. How many pellets must be added to 500 g of water initially at 20 degrees Celsius to make the final equilibrium temperature 30 degrees Celsius? (neglect the heat capacity of the container) Specific heat of copper $=0.0924$ cal/g degree Celsius and specific heat of water $=1.0$ cal/g degree Celsius.Ans:773
Q10. How much heat is needed to convert 80 g of ice initially at -10 degrees-C to steam at 100 degrees-C? (C(water) = 1.0 cal/g.degree C, $L(f)=80$ cal/g, C(ice) $=0.5 \mathrm{cal} / \mathrm{g}$. degree $C, L(v)=540$
cal/g).Ans:58 kcal

Heat and Work

Q11. One mole of an ideal gas is taken through the cyclic process $A B C A$ as shown in Fig. (2). What is the net heat absorbed, or lost, by the gas? Ans:-1. $0 \times 10^{3} \mathrm{~J}$.

Q12. In a PV diagram, a system of an ideal gas goes through the process shown in Figure 3. How much heat is absorbed after the system goes through this cycle 10 times. [Take $P=1.0 \mathrm{~Pa}$ and $\mathrm{V}=1.0 \mathrm{~m}^{3}$]. Ans:20 Joules.

Figure 3

Some Special Cases of the First Law of Thermodynamics

Q13. Nitrogen gas $(m=1.00 \mathrm{~kg})$ is confined in a cylinder with a movable piston at a pressure of 1 atm. A quantity of heat of 25 kcal is added to the gas in an isobaric process, and its internal energy increases by 8 kcal . What is the change in the volume of the gas?Ans:0.7 m^{3}
Q14. One gram of water is heated from 0 degree-C to 80 degree-C at a constant pressure of 1 atm. Determine the change in internal energy of the water. Neglect the change in volume of the water. (Cwater $=4186$ J/kg.K.)Ans:80 cal
Q15. One gram of water is cooled from 100 degrees-C to zero degrees-C and becomes all ice. Determine the change in internal energy during this process. (Neglect any change in the volume of the water.) (For water: $\mathrm{C}=4186 \mathrm{~J} / \mathrm{kg}$ degrees -C and $\left.\mathrm{Lf}=3.33 \times 10^{5} \mathrm{~J} / \mathrm{kg}.\right)$ Ans:-752 J

Heat Transfer Mechanisms

Q16. Calculate the rate of heat flow through a glass window, $2.0 \mathrm{~m} \times$ 1.5 m in area and 3.3 mm in thickness, if the temperature of the outer and inner surfaces is 5.0 degrees C and -5.0 degrees C, respectively. [Thermal conductivity of glass $=0.84 \mathrm{~J} /(\mathrm{s} . \mathrm{m} . \mathrm{K}] A n s: 7636 \mathrm{~W}$.
Q17. A glass window has an area of $0.50 \mathrm{~m}^{2}$ and a thickness of 0.60 cm . If the rate of heat flow between the faces is $500 \mathrm{~kJ} / \mathrm{hour}$, find the temperature difference between the window's faces. $\mathrm{K}(\mathrm{glass}$) $=0.80 \mathrm{~W} / \mathrm{m}$ C-degrees.Ans:2.1 C-degrees
Q18. An insulated alumimum rod has a length of 2.0 m and a diameter of 2.0 cm . The ends of the rod are maintained at a temperature difference of 200 degrees $-C$. Find the heat transferred along the rod in one minute.(Thermal conductivity of Al= $238 \mathrm{~W} / \mathrm{m} . \mathrm{K}$.$) Ans:449 J$

