Tour in Surface Science Techniques
Contents

- Medical: Quick Impressions
- Why Surface?
- One detailed example: XPS
 - Conditions, information,
 - Ingredients:
 1-Source 2-Surface 3-Spectrom
 - Extensions
 XPD, ARPES, SRPES, PEEM
- Other techniques
- Conclusion
Medical: quick impressions

almost always

• Living/ moving tissues

• Nondestructive testing

• *Volumes* to treat, image in 3D or project to 2D

• *mm* level imaging (nm with STM)
Why surface is interesting?

- Interesting physics:
 - half the volume is missing: laws are different
 - Oxidation and gas association phenomena
 - Layers growth, thin films

- The place where atoms are manipulated (STM)

- Important Applications
 - electronics industry: chips are in surface realm
 - Silicon, germanium…
 - catalysis -corrosion
XPS: X-ray Photoelectron Spectroscopy
Elemental + Chemical Info

- n, l, LS : lines
 - “Finger print”

- Chemical shifts
 - oxidation studies
 - catalysis poisoning
 - magnetic properties

- 1 - 10 nm depth
- 0.01 - 1 % tracing
380°C, 1 atm, air

Binding Energy (eV)
Extended techniques
X-ray Photoelectron Diffraction (XPD)

- Track angular variation of a certain peak intensity. It varies only if it belongs to the second layer.

Consideration: preparation, propped depth, time
- surface structure + enhanced surface sensitivity
Photoelectron Emission Microscopy (PEEM)

- Focus x-rays → image
 - collimating (signal↓ -> synchrotron)
 - x-ray optics (under development)

- Advantage: Element specific, chemical status

- Applications:
 - diffusion, segregation, Shottky barrier
Auger process

- 3-e process, not $f(h\nu)$
- X-ray or e-beam induced
- Microscopy (SAM)
- fluorescence (by x-ray as TRXF)
- 1 in 10^9-10^{12}
Other Surface Techniques
Scanning Probe Microscopy

- STM, AFM …
- high (or even atomic) resolution
- atomically sharp tip raster a surface
- vary/fix current voltage, move tactic
- tip material

www.park.com
NIST

(left) single atomic zig-zag chain of Cs (red) on GaAs(110) surface.

(right) substitutional Cr impurities (small bumps) in Fe(001) surface
Proton-induced X-ray emission (PIXE)

- micro PIXE– images (now: 5 x 5 µm)
- 3 MeV protons (accelerator + focus) → inner vacancy – florescence
- trace analysis of elemental composition
- simultaneous multi-element (NDT!)
- multilayer --- not a surface technique

Mineralogy, Geochemistry & Materials Science
Conclusion

- Microscopy with Spectroscopy feature
- Medical: interest, restrictions, *importance*
- Material science: diversity