-Mulios of Vanadiumphosphate glasses

Guldad Khattak & A. Mekki

Department of Physics, KFUPM Dhahran, Saudi Arabia

SPS December (18-20) 2006

OUTLINE

- Amorphous materials
- Introduction to the XPS technique
- Desirability for XPS Studies
- XPS of v-phosphate glasses
- Results/Discussion
- Conclusion

Amorphous materials
Without form/no periodicity
Not-crystalline
Have short range order rather than long range order

Glass form a particular class of amorphous materials

Types of glasses

- Metallic glasses/spin glasses (CuMn, FeMn)
- Semiconducting glasses can be generally devided into two groups:
 - i) Chalcogenide glasses (As₂Te₃, GeSe, As₂Se₃, GeSeTe)
 - ii) Oxide glasses containing TM ions
- Insulating glasses (Other oxide glasses)

Phosphate glasses have technological applications such as:

- Have a very high transmission in the ultraviolet region.
- Suitable materials for high power lasers because of low thermo-optical coefficient and large emission.
- Most biocompatible glasses are also based on phosphate glasses, used for bone repair etc.
- Alkali-alumino-phosphate glasses indicate the possibility of connection with organic polymers.

Applications continued

- V₂O₅,B₂O₃ and phosphate glasses containing mono-valent cations like Li+ and/or Ag+ have applications as solid electrolytes in electrochemical devices such as batteries, chemical sensors, storage devices and smart windows because of their high ionic conductivity.
- TM oxide glasses have applications as optical and electrical memory switching devices, making solid state devices and optical fibre.
- TeO₂ based glasses have both optical and electrical applications.

Methods of preparation

- Cooling from the melt
- Condensation from vapor
- Pressure quenching
- Solution hydrolysis
- Anodization
- Bombardment of crystals by high-energy particles or by shock waves

Role of different oxides in glasses

 SiO₂, P₂O₅, GeO₂, B₂O₃, are called **network formers** (these oxides readily form a glass)

 Al₂O₃, TiO₂, MgO, TeO2, V2O5 are called intermediate (can substitute for network formers but do not form glasses on their own)

Na₂O, LiO₂, K₂O are called network modifiers (disrupt the glass network)

X-Ray Photoelectron Spectroscopy (XPS)

Basic aspects of XPS

XPS is a <u>surface</u> analytical technique (top 0.5-5 nm) that is widely used for material surface characterization.

Chemical and structural effects

BE of photoelectron sensitive to:

Type of atoms

The oxidation state of the atom

Local chemical environment

X-ray photoelectron spectroscopy (XPS) showing chemical shift

Photoemission Intensity

Objectives

(i) Find the redox state(s) of V ions using XPS

(ii) Finding BO/O total

(iii) Study the structural role of V in these glasses

Glass system investigated

$(V_2O_5)_x (P_2O_5)_{1-x}$

x = 0.3, 0.4, 0.5, 0.6

Experimental details

Sample preparation

-Stoichiometric amounts of V₂O₅ and P₂O₅ were melted in Alumina crucibles at ~ 1100 °C for two hours. -Oxidation & reduction reactions in a glass melt depend on several factors and so the glasses were prepared under similar conditions to minimize the effect

Chemical composition was determined by ICP.

XPS measurements

High resolution V 2p, O 1s, and P 2p core level spectra were obtained Using an Al K α X-ray source on a VG ESCALAB Mk II. Glass rods were Fractured in UHV (~ 10⁻¹⁰ mbar). The C 1s was a reference level. Accuracy in the quantitative analysis ~ ± 5%.

ICP measurements

	<u>Nominal</u>		Analysed	
x	P ₂ O ₅	V_2O_5	P_2O_5	V ₂ O ₅
0.30	0.70	0.30	0. 64	0.36
0.40	0.60	0.40	0.61	0.39
0.50	0.50	0.50	0.54	0.46
0.60	0.40	0.60	0.46	0.54

V 2p spectra

 Usually V 2p_{3/2} spectra for the glass samples are sufficiently broaden such that two peaks are fitted to the data.

 These peaks are associated with the presence of V⁵⁺ and V⁴⁺ and the relative area under each peak reflects the relative amount of each ion.

 Here in this study the spectra could be fitted to only one peak, V⁵⁺, so V is found to be in the V⁵⁺ state in these glass samples.

O 1s spectra

V-O-V,V-O-P, P-O-P: bridging oxygen (BO)
V = O, P=O: non-bridging oxygen

 $(V_2O_5)_x (P_2O_5)_{1-x}$

 BO/TO = 42, 30, 22, 19 % for x = 0.3,0.4, 0.5 & 0.6, respectively

NBO/TO 58-80%

X	V 2p _{3/2}	<mark>Р 2</mark> р	O1s (A)	O1s (B)	BO/O total
	FWHM	FWHM	FWHM	FWHM	(±0.030)
0.3	516.56	133.65	532.46	531.27	0.427
	2.17	2.41	2.43	2.10	
0.4	517.32	134.39	533.24	531.54	0.298
	2.55	2.45	2.43	2.19	
0.5	517.2	134.04	533.00	531.39	0.217
	2.46	2.35	2.40	2.01	
0.6	517.55	133.95	533.03	531.53	0.193
	2.47	2.30	2.43	2.10	

Condensed phosphates can conveniently be divided into three major groups :

(a)Linear Polyphosphates
$$P_{n^{3}n+1}$$
chains(b)Metaphosphates $P_{n^{3}n}$ $n-$ rings(c)Ultraphosphates $P_{n^{3}n+m}$ $(n+2m)-$ cages, sheets,
3-D structures

Three main structural groups for phosphates Linear phosphates: $R = P/M \le 2$ & $R^* = O/P > 3$ Metaphosphates: R = P/M = 2 & $R^* = O/P = 3$ Ultraphosphates: R = P/M > 2 & $R^* = O/P < 3$ Ratios of phosphorous to metal ($R = P/M \le 2$) and oxygen to phosphorous ($R^* = O/P > 3$) suggest that these phosphate glasses

probably exist as linear chains.

Conclusion

✓ The XPS analysis of V 2p core level indicates that almost all V ions exist in the V5⁺ state only

✓ The XPS analysis of O 1s core level indicates that both BO & NBO exist in these glasses [BO/O total varies from 42-19% for V =0.3-0.6

✓ The study shows that vanadium plays, in these glasses, the role of a network modifier rather than a glass former as reported in other vanadate glasses.

Thank you