DC Conductivity studies of Sr-V-B glasses **Guldad Khattak 10 December 2006** Department of Physics, KFUPM Dhahran, Saudi Arabia

In collaboration with

Dr. A. Mekki

OUTLINE

- Amorphous materials
- Desirability for Magnetization & XPS Studies
- XPS & Magnetization Results of Sr-Vborate glasses
- Desirability for DC conductivity studies
 - Description of the proposed research
- Theory
- Conclusion/Expectations

<u>Amorphous materials</u>

- Without form/no periodicity
- Not-crystalline
- Have short range order rather than long range order

Glass form a particular class of amorphous materials

Types of glasses

- Metallic glasses/spin glasses (CuMn, FeMn)
- Semiconducting glasses (As₂Te₃)
 Insulating glasses (oxide glasses) but TM oxide glasses are Semicond.

- Oxide glasses have technological applications such as:
- Optical fibers (Si, Ge)
- Ionic conductors (Alkali-Si or Alkali-Ge)
- Semiconductors (Fe-B, Cu-Si, V-Ge)
- Glass Ceramics (Mg-Al-Si, Mg-P-Si)

Methods of preparation

- Cooling from the melt
- Condensation from vapor
- Pressure quenching
- Solution hydrolysis
- Anodization
- Bombardment of crystals by high-energy particles or by shock waves

Role of different oxides in glasses

- SiO₂, P₂O₅, GeO₂, B₂O₃ are called network formers (these oxides readily form a glass)
- Al₂O₃, TiO₂, MgO are called intermediate (can substitute for network formers but do not form glasses on their own)
- Na₂O, LiO₂, K₂O are called network modifiers (disrupt the glass network)

Techniques used

XPS (Previous project)

Magnetization (previous project)

DC conductivity (New project as a continuation of the previous work)

Objectives (Previous Project)

(i) Investigate the magnetic properties of V ions in Sr-V-borate glasses.

(ii) Find the redox state(s) of V ions using both XPS and magnetic measurements.

(iii) Study the structural role of V & Sr in these materials

(iv) Study electrical conductivity to further understand the mechanism of electrical properties. (New Project) Glass systems investigated

 $[(V_2O_5)_x (SrO)_{1-x}]$

$[(V_2O_5)_{0.5}(SrO)_{0.5-y}(B_2O_3)_y]$

and $[(V_2O_5)_x(SrO)_{0.2}(B_2O_3)_{0.8-x}]$

Experimental details

Sample preparation

Stoichiometric amounts of V_2O_5 , SrO and B_2O_3 were melted in Alumina crucibles at ~ 1100 °C for two hours. Chemical composition was determined by ICP.

Magnetic data

M vs. T data were recorded using a SQUID magnetometer in a magnetic field of 5000 Oe over a temperature range of 5 K to 300 K. Accuracy ~ \pm 3%.

XPS measurements

High resolution V 2p, O 1s, Sr 3p, and B 1s core level spectra were obtained Using an Al K α X-ray source on a VG ESCALAB Mk II. Glass rods were Fractured in UHV (~ 10⁻¹⁰ mbar). The C 1s was a reference level. Accuracy in the quantitative analysis ~ ± 5%. Sr 3p spectra have the same B.E. for all samples.

Shifted by 0.6 eV towards higher B.E. in comparison to their values in SrO powder.

This shift arises from a change in the molecular environment.

- . V 2p_{3/2} spectra for the glass samples are sufficiently broaden such that two peaks are fitted to the data.
- These peaks are associated with the presence of V⁵⁺ and V⁴⁺ and the relative area under each peak reflects the relative amount of each ion.
- More than 90% of the V is found to be in the V⁵⁺ state in these glass samples.

O 1s spectra

V-O-V,V-O-B, B-O-B: bridging oxygen (BO) V-O-Sr, Sr-O-Sr, V = O non-bridging oxygen $(V_2O_5)_x (SrO)_v (B_2O_3)_z$ NBO/TO = (4x+2y)/(5x+y+3z)NBO/TO 57-85%

Good agreement between calculated and measured.

NBO/Total

Series	z ,y ,x	(0.030±) _{total} O/NBO *[1Equation]
Ι	= x0.2	*0.857 0.851
	0.3 =x	*0.895 0.844
	0.4 =x	*0.941 1.000
	0.5 =x	*1.000 1.000
II	0.1 =y	0.875 0.810
	0.2 =y	0.765 0.792
	0.3 =y	0.667 0.612
	0.4 =y	0.579 0.536
III	0.4 =z	0.588 0.572
	0.5 =z	0.667 0.612
	0.6 =z	0.737 0.731
	0.7 =z	0.780 0.771
	0.8 =z	0.857 8510

Photoelectron Intensity (arb. units)

Magnetization Data

The Temperature independent term from two contributions:

i) Diamagnetic from core ions in the glass matrix ii) Temperature-independent paramagnetic contribution from V_2O_5 (~5x10⁻⁷emu/Oe g V_2O_5)

The temperature-independent term can be either positive or negative depending on the relative size of these two contributions

-In these glasses it is positive as V₂O₅ contribution dominates

-In V-Na-Silicate glasses the diamagnetic contribution dominates so the term (M/H)background is negative

- V_2O_5 contribution increases with an increase in the V_2O_5 content

Magnetization Data

Curie-Weiss formula is adequate:

Magnetic ions appear to be interacting Still in the low field limit (μ H<< kT) M/H = C/(T- θ)

Analysis based on three fitting parameters $M/H = (M/H)_{background} + C/(T-\theta); M/H vs T will give (M/H)_{background}$ $M^*/H = M/H - (M/H)_{background} = C/(T-\theta)$ $H/M^* vs T$, least square fitting gives C & θ

Finally we use the three fitting parameters in the

 $M/H = (M/H)_{background} + C/(T-\theta)$ equation and compare the fit to the measured M/H.

 $(M/H)_{background}$ is positive, θ values negative, antiferromagnetic Interactions between the V⁴⁺ ions.

Magnetization Results

TABLE Compositions and magnetic characterization parameters for the vanadate glasses.

	Batch	Actual			$(M/H)_{const}$	С	θ	
		V_2O_5	SrO	B_2O_3	$\left(\frac{10^{-7}\text{emu}}{\text{g Oe}}\right)$	$\left(\frac{10^{-4}\text{emu K}}{\text{g Oe}}\right)$	(K)	V ⁴⁺ /V
$(SrO)_x(V_2O_5)_{1-x}$	x = 0.5 x = 0.4 x = 0.3 x = 0.2	0.488 0.591 0.692 0.792	0.511 0.409 0.308 0.208	- - -	0.700 1.17 1.55 2.00	0.533 0.700 0.955 1.54	-0.91 0.03 -0.05 -2.85	0.0206 0.0236 0.0289 0.0427
$(V_2O_5)_{0.5}(SrO)_{0.5-y}(B_2O_3)_y$	y = 0.1 y = 0.2 y = 0.3^{a} y = 0.3^{b} y = 0.4	0.498 0.483 0.516 0.486 0.539	0.415 0.299 0.214 0.192 0.112	0.087 0.218 0.270 0.322 0.347	0.670 0.630 0.850 2.00 1.76	0.603 0.731 1.41 0.771 0.617	-0.07 0.42 -1.38 -5.65 -7.41	0.0225 0.0270 0.0489 0.0276 0.0204
$(V_2O_5)_z(SrO)_{0.2}(B_2O_3)_{0.8-z}$	$\begin{array}{l} z = 0.4 \\ z = 0.5^{b} \\ z = 0.5^{a} \\ z = 0.6 \\ z = 0.7 \\ z = 0.8 \end{array}$	0.434 0.486 0.516 0.613 0.701 0.792	0.220 0.192 0.214 0.209 0.209 0.208	0.346 0.322 0.270 0.178 0.091 0.000	0.950 2.00 0.850 2.00 1.67 2.00	0.734 0.771 1.41 3.24 2.47 1.54	-1.88 -5.65 -1.38 -2.64 -1.94 -2.85	0.0283 0.0276 0.0489 0.1007 0.0721 0.0427

^{a,b} – Refers to two samples with the same nominal composition.

Magnetization Results 1. The Ratio V⁴⁺/V_{total} consistent with XPS findings

2. The negative values for θ in the range of -0.2 -4.2 K indicate a weak 2 antiferromagnetic interaction between the V4+ ions

3. These small values are not surprising since θ is proportional to:

a) the # of neighboring magnetic ions (negligible for these low V4+ concentration)

b) as well as the strength of the magnetic interaction.

DC electrical conductivity

- Continuation of our previous work (XPS & Magnetization)
- To understand the nature of the mechanism of DC conductivity

To develop a correlation between the composition, microstructure & DC conductivity in these glasses.

DC conductivity

- Two types of conductivities:
- i)lonic conductivity (higher temp. region)
- ii)Electronic conductivity (lower temp.region)
- ionic conductivity is a thermally activated process: mobile ions jump from a potential well to the next due to thermal motion. The vibrating ions have a finite and equal probability of surrounding the potential barrier and moving to the adjacent pot.well.

Ionic conductivity continued

- Resistivity p is given by
 - $\rho = \rho_o \exp(W/K_BT)$
 - $\rho_o = \text{constant} = 6K_BT/\text{fsd}^2\text{q}^2\text{N}$
- f =frequency of the ions
- d =average distance between holes
- q = ionic charge, N = # mobile ions
- W = activation energy
- S =# of holes

Example of ionic and electronic conduction

Figure 1. Resistivity-temperature dependence of glasses G1-G8.

 Table 1. Compositions of the glasses studied (in mol%).

Glass No	G1	G2	G3	G4	G5	G6	G7	G8
$\begin{array}{c} Na_2O\\ V_2O_5\\ B_2O_3 \end{array}$	16	16	16	16	16	16	16	16
		2	4	5.5	7	8.5	10	14
	84	82	80	78.5	77	75.5	74	70

electronic

ionic

Procedure

- Disc- shaped samples
- Polished
- Evaporation of Gold electrodes
- Measure I vs V in the temperature range 293-473 K
- Analysis of the data will be carried out as follows

DC conductivity

- Electronic conduction by small polaron hopping process (through the hopping of an unpaired electrons from V⁴⁺ site to V⁵⁺ site..)
- Depends on the ratio of V⁴⁺/V⁵⁺
- Analysis of the conductivity as follows:

DC Electrical Conductivity Theory

$\sigma(T) = A(T) e^{-\beta W(T)}$, (1)

Where:

- W is the activation energy
- T is the temperature,
- $\beta^{-1} = k_B T$, k_B is the Boltzmann constant,

and A(T) and W(T) are assumed to be slowly varying functions of the temperature. Usually analysis of the conduction curve by Arrhenius plot calculates the slope, or

 $W'(T)/k_B^{-1}$ where

DC conductivity continued

W'(T) = - ∂ In $\sigma/\partial\beta$

 $= W(T) - \partial/\partial\beta \ln[A(T)] + \beta \partial/\partial\beta[W(T)]$ (3)

= W

for A and W to be temperature independent, the slope should be constant, yielding directly the activation energy, W.

(2)

DC conductivity continued

- In general case, W'(T) does not
- permit A and W to be uniquely determined.
- Often, however, models of electrical transport place additional constraints on the functions A(T)and W(T), and with these constraints we can determine both A(T) and W(T) from $\sigma(T)$. We illustrate this with two model examples.

Model1-Variable range hopping

Assuming N(E) = N₀ (E-E_F)^p,Hamilton has shown that $\sigma(T) = \sigma(o) \exp(-BT - [(p+1)/(p+4)]),$ Where 0 (5)Equation (3) yields the functionW'(T) = Bk_B [(p+1)/(p+4)] T ^{3/(p+4)}.(6)The constants B and p can be determined from the

intercept and slope on a log W' versus log T plot.

Brief explanation

- Mott (1968): At low temperatures the most frequent hopping process would not be to a nearest neighbor.
- Within a range R of a given site the density of states per unit energy range is, near E_F, (4π/3)R³N(E_F)
 The energy ΔE = 1/[(4π/3)R³N(E_F)]

continued

- But hopping over a large distance involves tunneling and the probability will contain a factor exp(-2 α R), 1/ α =decay length of the localized wave function.
- There will be an optimum hopping distance R,for which $exp(-2\alpha R)exp(-\Delta E / k_B T)$ is a maximum or $2\alpha R + 1/(4\pi/3)R^3N(E_F)$ is minimum ----> $R = [1/8\pi N(E) \alpha k_B T]^4$

Continued..

 $\sigma(\overline{T}) = A \exp(-B/T^{n}),$ B = 2(3/2\pi)^{1/4}[\alpha^3/k_BN(E_F)]

As a check on the validity of this model, according to Mott the energy W'(T) must satisfy

W'(T) < 2 p/(p+4) K_BT. (7)

Model 2-Conduction by small polarons

Schnakenberg has analysed the hopping energy W of small polarons at temperatures above $\Theta_D/4$, where Θ_D is the Debye temperature of the optical phonons of the solid, and he deduced the following high temperature relation: W(T) = W_H [{tanh($\Theta_D/4T$)/($\Theta_D/4T$)}] + W_D/2 (8)

- W_D and W_H are two constants, called disorder energy and small polaron hopping energy, respectively.
- W_D between the initial and final sites due to variations in the local distributions of the TM ions.

• Using Eqn.(3) again, we find W'(T) = $W_H \operatorname{sech}^2(\Theta_D/4T) + W_D/2$ (9)

- $W_{\rm H}, W_{\rm D}$ and $\Theta_{\rm D}$ are determined in two steps:
- i) First we assume $W_D = 0$, and expand sech² ($\Theta_D/4T$). Eqn(9) becomes W'(T) = $W_H [1 - (\Theta_D/4T)^2 +]$ (10) A plot of W'(T) vs T⁻² yield a straight Line with intercept W_H and slope $W_H (\Theta_D/4T)^2 \Theta_D$ is found here.

ii) The data is then replotted as W' versus sech² ($\Theta_{D}/4T$) using Θ_{D} values determined in the preceding step. A straight line should yield Intercept = $W_D/2$ and Slope $= W_{\mu}$ The hopping energy W(T) may then be determined using eq.(8).

- ✓ We hope to achieve the following:
 - i) Dependence of **\sigma(T)** on V⁴⁺/V_{total}
 - ii) Dependence of **a(T)** on BO/O_{total}

iii) V₂O₅ plays the role of a glass modifier or glass former and its concentration dependence.

Thank you