Brightness-based methods for correcting beam-former Speed of Sound (SOS)

Jihad H Al-Sadah, James A Zagzebski University of Wisconsin – Madison Medical Physics

Justification of the study

Clinical Significance Indication of disease Fatty liver, cirrhosis Image quality Zeroth order correction, Low computational cost Good impact on image quality

Beam former @ 1540 m/s

ATS 539 Rubber@1460m/s

-1

-2

Experimental: Beam former / Siemens

- SOS is important in Tx and Rx
- Siemens /Antares Research interface allows control over:
 - SOS-Tx: bfpropagationve
 - SOS-Rx: propagationvelc
- Phantoms used:
 - ♦ RMI403: ≈gel of 1540m/s
 - ATS539: ≈rubber of 1460m/s

dukemil.egr.duke.edu/Ultrasound/k-space/img26.png

Objectives of the study

Development of Metrics
Point feature
Brightness over area
Correlation metrics
Physical basis investigation
Defocusing effects

Experimental Observation
 distance to probe surface affect SOS estimate

Outline: POINT FEATURE METRICS

- 1. Metrics of "defocusing" of *point* features
 - Lateral profiles, Axial profiles
 - Focusing enhance reverberation
- 2. Correlation Loss Metrics
- 3. Brightness Variation Metrics
 - Defocusing basis
- 4. Analysis
 - Axial depth effect on SOS
 - General Spatial variation of SOS
- 5. Conclusions

Simple Metrics of a curve (not based on fitting)

Fitting is costly; and not simple in the axial direction \rightarrow

Width characterization of a point's: Lateral profile

50% or
 lower are
 stable
 metrics

80% width
 had
 occasional
 failures

≈rubber of

poin

Brightness approach on lateral profiles

- MBS is more stable than MB
- Generally not as reliable as width metrics
- Sensitive to point position and distance from the surface of the probe

Axial profiles: competing effects

1450 m/s

4

Better Rx resolution Shorter decay/ rise up distance

 "Elongated damping" due to a well focused Tx
 Wider peaks!

Axial profile metrics:

Axial Peak width metrics

• Notice effect of *"elongated damping"* on the <u>failure</u> of axial width metrics

Brightness based Axial metrics:

- Flipping over lateral position \rightarrow sensitivity to lateral position
- Intermediate lines show intermediate SOS estimates

- Extended interfaces should resolve such difficulty
 - e.g. organ boundary like fatty region interfacing liver
- Work in progress

Outline : Correlation Loss Metrics

- 1. Metrics of "defocusing" of point features
 - Lateral profiles,
 Axial profiles
 - Focusing enhance reverberation
- 2. Correlation Loss Metrics
- 3. Brightness Variation Metrics
 - Defocusing basis
- 4. Analysis
 - Axial depth effect on SOS
 - General Spatial variation of SOS
- 5. Conclusions

Correlation Metrics

$$correlation'(sos, shift) = \sum_{p=p_i}^{p_f} \sum_{l=l_i}^{l_f} rfMaster(sos, p, l) \cdot T_{shift} [rfMaster(sos, p, l)]$$

$T_{shift}[rfMaster(sos, p, l)] =$

rfMaster(sos, p, l + floor(shift)) + (shift - floor(shift)) * rfMaster(sos, p, l + ceil(shift))

Valid Correlation Metrics Based on correlation loss

curve

- Sum of Squares: most robust
- Sum: avoid negative portion
- Min: keep lateral shift <4

Outline: Brightness

1. Metrics of "defocusing" of *point* features Lateral profiles, Axial profiles Focusing enhance reverberation 2. Correlation Loss Metrics **3.** Brightness Variation Metrics Defocusing basis 4. Analysis Axial depth effect on SOS 5. Conclusions

ATS-539 Expect≈1460m/s result≈1450m/s

• RMI-403

- ◆ Expect≈1540m/s
- ♦ result≈1550m/s

Comments

Mean brightness squared is:

- <u>robust</u> metric (less failures than Peak /mean)
- Still as <u>simple</u> and computationally light
- Does not <u>need/avoid</u> point features
- Peak and mean brightness occasionally fails
- Spatial stability of the metric applied to small regions is under investigation
 - There is a slight depth variation

Observation: optimal SOS varies with Depth

- Estimates vary with distance from the surface of the transducer
- Avoid first few cm's
 estimates are lower than expected
- <u>3 5cm</u> away from surface seems reasonable

Low Depth lowers SOS Estimate

	0.0cm	2.5 cm	7.0 cm
Visual	1470	1510	1530
Brightness Sq	1490	1530	1540
Lateral Width	1470	1510	1520
Ax. Rise/decay	1460	1530	1550
Correlation	1450	1500	1540

Metric	Speedy	Accurate	Robust	Clinic. site	Score
Axial Rise up	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$
Lateral Width	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{\sqrt{N}}}$	$\sqrt{\sqrt{2}}$	\checkmark	\checkmark
Mean Sq Brightness	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$
Correlation Mean square		$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{2}}$	$\sqrt{\sqrt{1}}$

Conclusions

There appears to be several stable metrics for SOS

- Correlation
- Axial edge dulling
- Mean brightness square
- <u>Low</u> separation from surface lowers SOS estimates
 - Keep 3-5cm at least
 - physical basis? elevational focus?
 - There is room for phase aberration correction on the basis of SOS

Thank you

