Signal to noise ratio estimates of ultrasound depth of penetration

Hairong Shi, Jihad H Al-Sadah, Thomas R Mackie and James A. Zagzebski University of Wisconsin-Madison, Department of Medical Physics

DOP: Depth of Penetration

- Used as a test of system sensitivity
 - Acceptance tests
 - Routine QA tests
- DOP: depth beyond which details in background material of phantom cannot be visualized.

Intensity ↓ DOP ↓ (ATL: L74)

low: MI 0.10

hi: MI 0.41

Frequency1 DOP1 (Siemens: C52)

DOP: <u>Depth of Penetration (cont)</u>

• Assessment is *subjective*

 Not widely accepted by standards groups, such as NEMA, IEC

Goals

- Establish an objective measure of maximum depth of visualization
 - Be based on a signal-to-noise ratio <u>SNR</u>' measurement vs. depth
 - Should be *consistent* with user DOP

Experimental Methods

- <u>Phantom</u>: Gammex RMI 403 GS phantom, attenuation is 0.7 dB/cm-MHz
- Transmit <u>focus</u>, receiver <u>gain</u> adjusted for maximum visualization depth of background echoes
- 3 researchers <u>independently</u> placed an electronic marker on machine's frozenimage monitor to indicate DOP

Observation process

- observers agreed on criteria,
 - DOP judged to be the depth at which details of background texture are visualized. Isolated texture marks not counted.
- images are frozen, read and saved for both
 - the phantom
 - the noise: free probe

Phantom image & Free probe image (GE: 4S)

Phantom image

Image of free probe

SNR'-DOP

- Define:
 - signal (s') = mean pixel value of phantom image
 - Noise (n') = mean pixel value of free probe image
 - SNR' = s'/ n'
- it is a *measure* called *SNR*'

SNR'-DOP (cont) typical image (GE: M12 10MHz)

SNR'-DOP (cont) typical image (GE: M12 10MHz)

The process of averaging

Run the averaging box over the line in both phantom and free probe images

Results & Analysis

Effect of Changing Transmit Level

• If we pick SNR'=1.5

- Observer-DOP \cong (SNR'-DOP)

- difference is comparable to users StDev

SNR'-DOP tracks well Observer-DOP (transmit level study)

 Q. Is this SNR' =1.5 good for all probes and/or settings? (is it global ?)

• Answer:

- We need Quantative measure of agreement

 it is the *mean deviation* between users DOP and Depths at which SNR' cutoff occurs

How much SNR'-DOP deviate from Observers-DOP for three levels of Frame averaging or persistence

Experiments done

Probe	runs	Parameters
Siemens C52	14	Frequency, processing map
ATL L7-4	5	Transmit level
ATL C52	14	Transmit level
GE 10L	4	Transmit level
GE M7C	3	Frequency
GE M12	2	Frequency
GE 10L	1	
Siemens C52	3	Persistence
Siemens VFX	2	Persistence
8	48	← total

Scatter plot → mean deviation

Conclusions

- SNR' tracks/predicts well observers-DOP
- Observers DOP goes to depths of SNR' as low as 1
- SNR' corresponding to user defined DOP varies somewhat with persistence, maps, and likely other parameters
- A global SNR' lies between 1 and 2
- 1.3 1.5 is a good selection
- deviation of 4.0 mm (users StDev= 2.0mm)